Researchers use perovskite nanocrystals to design bio-inspired imaging sensors capable of “seeing” into the UV range

Researchers at Nanjing University and University of Illinois at Urbana-Champaign have drawn inspiration from the enhanced visual system of the Papilio xuthus butterfly, and developed an imaging sensor capable of “seeing” into the UV range inaccessible to human eyes. 

The design of the sensor uses stacked photodiodes and perovskite nanocrystals (PNCs) capable of imaging different wavelengths in the UV range. Using the spectral signatures of biomedical markers, such as amino acids, this new imaging technology is even capable of differentiating between cancer cells and normal cells with 99% confidence.

Read the full story Posted: Nov 05,2023

Team reports perovskite-based process to simplify manufacturing of solid-state lighting

Researchers at the University of Missouri and the University of Tulsa have described a process using 3D printing to simplify the manufacturing of stable lighting technology. The work comes on the heels of the Biden administration’s recent decision to enforce a long-delayed rule banning the sale of most traditional incandescent light bulbs.

The team leveraged 3D printing to create resin-perovskite color conversion layers. Using an affordable 3D printer, they mixed perovskite nanocrystals capable of emitting green, yellow and red light with a transparent ultraviolet resin. The combination resulted in a thin color conversion layer that transformed UV light into various colors and demonstrated a high level of stability. The researchers then stacked these layers onto a UV light-emitting diode chip, producing a natural white light.

Read the full story Posted: Nov 05,2023

Researchers report light guide plate based on perovskite nanocomposites

Perovskite nanocrystals (PNCs)/polymer nanocomposites can combine the advantages of both materials, but achieving the fabrication of PNCs/polymer nanocomposites by bulk polymerization has proven Very challenging. A team of scientists, led by Professor Bai Yang from Jilin University in China, has adopted a a two-type ligand strategy to fabricate bulk PNCs/polystyrene (PS) nanocomposites, including a new type of synthetic polymerizable ligand.

The CsPbCl3 PNCs/PS nanocomposites reportedly showed extremely high transparency that can be ascribed to the Rayleigh scattering as the PNCs distribute uniformly without obvious aggregation. Based on this behavior, the team first exploited the potential of PNCs to serve as scatters inside light guided plate (LGP), whose surface illuminance and uniformity can be improved, and this new kind of LGP is compatible with advanced liquid crystal display technology. 

Read the full story Posted: Nov 04,2023

Researchers develop method homogenizing perovskite films

An international team that included scientists from the Chinese Academy of Sciences (CAS), Southern University of Science and Technology (SUSTech), University of Science and Technology of China (USTC), Sungkyunkwan University (SKKU), The Hong Kong University of Science and Technology, University Grenoble-Alpes, CEA, CNRS, INP, IRIG/SyMMES, IEK5-Photovoltaics and North China Electric Power University (NCEPU), has proposed a new method of fabricating homogenized perovskite films for solar cells. 

The process involves inhibiting phase segregation caused by internal cation inhomogeneity to increase conversion efficiency to 26.1%, thus tying the existing record.

Read the full story Posted: Nov 03,2023

Researchers design commercially viable perovskite/CuInSe2 thin-film tandem solar cells with 29.9% efficiency

Researchers at Empa, National University of Singapore (NUS) and Helmholtz Institute Erlangen-Nürnberg for Renewable Energy HI ERN have reported novel electrical and optical enhancement approaches to maximize the performance of perovskite front cells. 

The team introduced new electrical and optical techniques, using methyldiammonium diiodide and adjusting the optical interference spectrum. This resulted in a record efficiency of 20.2% (21.8% by J-V scan) for a semi-transparent perovskite cell and 81.5% average near-infrared transmittance. 

Read the full story Posted: Nov 02,2023

Researchers examine a perovskite-graphene device for X-ray detection

Researchers at Graphenea, University of Utah and Kairos Sensors have examined a perovskite-based graphene field effect transistor (P-GFET) device for X-ray detection.

The device architecture consisted of a commercially available GFET-S20 chip, produced by Graphenea, with a layer of methylammonium lead iodide (MAPbI3) perovskite spin coated onto the top of it. This device was exposed to the field of a molybdenum target X-ray tube with beam settings between 20 and 60 kVp (X-ray tube voltage) and 30–300 μA (X-ray tube current). Dose measurements were taken with an ion-chamber and thermo-luminescent dosimeters and used to determine the sensitivity of the device as a function of the X-ray tube voltage and current, as well as source-drain voltage.

Read the full story Posted: Nov 01,2023

Researchers report perovskite solar cell with ultrathin protective TMO buffer layers

Researchers from the University of Rome Tor Vergata, ENEA and CNR-ISM have used protective buffer layers in perovskite solar cells to mitigate damage during the sputtering of indium tin oxide in the production process. The scientists claim the buffer layers were able to achieve this without damaging the cell’s average visible transmittance.

The cell utilizes buffer layers made of transition metal oxides (TMOs) intended to protect the cell during the sputtering of indium tin oxide (ITO) in the cell production process. The scientists tested, in particular, two different evaporated transition metal oxides (TMOs) – molybdenum oxide (MoOx) and vanadium oxide (V2Ox)  and found the former provided the best performance.

Read the full story Posted: Oct 31,2023

Researchers develop improved method for 2D perovskite crystals via progressive transformation of quantum well thickness

A research team, led by Rice University chemical and biomolecular engineer Aditya Mohite and collaborators at Northwestern University, the University of Pennsylvania and the University of Rennes, reported a process that yields 2D perovskite-based semiconductor layers of ideal thickness and purity by controlling the temperature and duration of the crystallization process.

Known as kinetically controlled space confinement, the process could help improve the stability and reduce the cost of halide perovskite-based emerging technologies like optoelectronics and photovoltaics.

Read the full story Posted: Oct 28,2023

A look into the perovskite solar industry by application

The perovskite solar industry is emerging and becoming a vibrant industry, with dozens of companies that are developing and starting to produce perovskite-based and perovskite-enhanced solar panels, for many applications.

While the industry is still at an early stage, we can see that almost half (43%) of the active perovskite developers are focused on solutions for outdoor applications – mainly roof top and utility scale applications – for generating electricity on a large scale, a replacement for current silicon-based solutions. While this is a challenging area (requires low cost, high performance and very high stability), the size of this market is large and proven. Perovskite has some inherent advantages in this area – low weight, low cost, high return on investment, high efficiency and excellent light absorption properties.

Read the full story Posted: Oct 26,2023