March 2022

EneCoat Technologies receives investment from Mirai Creation Fund III

Japan-based EneCoat Technologies, developer of materials for perovskite solar cells, has received an investment from SPARX Group's Mirai Creation Fund III.

EneCoat intends to use this fundraising round to strengthen its R&D capabilities to help realize carbon neutrality. Its efforts include installing pilot equipment for next-gen perovskite solar cells and accelerating the development of IoT sensors and wearable devices.

Read the full story Posted: Mar 28,2022

Researchers create high-performance inorganic metal halide perovskite transistors

A team of researchers from Pohang University of Science and Technology, University of Electronic Science and Technology of China and Sungkyunkwan University has improved the performance of a p-type semiconductor transistor, using inorganic metal halide perovskite.

One of the biggest advantages of the new technology is that it enables solution-processed perovskite transistors to be simply printed as semiconductor-like circuits.

Read the full story Posted: Mar 27,2022

Tin perovskite solar cells achieve improved stability thanks to additives

A research team, led by Professor Ivan Mora Ser from the Institute of Advanced Materials (INAM) of the Universitat Jaume I of Castell, has improved the efficiency and durability of tin perovskite solar cells. The cells presented in the recent study exceeded 1,300 hours of operational stability, thanks to the incorporation of additives in the preparation of the devices.

Improved stability of tin PSCs achieved via additives image

Tin-based halide perovskites are being studied as potential candidates for lead-free perovskite solar cells. In the case of tin, an efficiency of more than 14% has been achieved so far, but it has major stability problems. This new work has introduced a combination of dipropylammonium iodide and sodium borohydride, two additives that have made it possible to prepare devices with PCEs of more than 10%, which boast greater stability and have maintained 96% of the initial PCE after 1,300 hours under solar illumination in a nitrogen atmosphere.

Read the full story Posted: Mar 20,2022

New ‘self-driving’ lab developed to advance the understanding of metal halide perovskites

Researchers from North Carolina State University and the University at Buffalo have developed a 'self-driving lab' that uses artificial intelligence (AI) and fluidic systems to advance the understanding of metal halide perovskite (MHP) nanocrystals. This self-driving lab can also be used to investigate other semiconductor and metallic nanomaterials.

Autonomous Nanocrystal Doping by Self-Driving Fluidic Micro-Processors image

'We've created a self-driving laboratory that can be used to advance both fundamental nanoscience and applied engineering,' says Milad Abolhasani, corresponding author of a paper on the work and an associate professor of chemical and bimolecular engineering at NC State.

Read the full story Posted: Mar 17,2022

Researchers address the issue of perovskite solar cells' stability

Researchers at the UCLA Samueli School of Engineering, along with colleagues from five other universities around the world, have discovered a major reason why perovskite solar cells degrade in sunlight, causing their performance to suffer over time.

Researchers find solutions for PSC stability issue image

The team demonstrated a simple manufacturing adjustment to fix the cause of the degradation, addressing one of the biggest hurdles toward the commercialization of the perovskite-based solar cell technology.

Read the full story Posted: Mar 16,2022

Researchers achieve large-area and efficient sky-blue perovskite LEDs via blade-coating

Researchers from Beihang University and the University of Science and Technology of China (USTC) of the Chinese Academy of Science have developed efficient and large-area sky-blue Perovskite-based LEDs, through blade-coating supersaturated precursors.

This approach results in nucleation in the solution phase with much higher nucleation sites, and a faster crystallization rate. The uniform films formed by this method reportedly exhibit smaller grain size, lower trap density, and higher radiative recombination rate.

Read the full story Posted: Mar 14,2022

Hanwha Q CELLS and Helmholtz-Zentrum Berlin reach 28.7% efficiency for 2T perovskite-silicon tandem solar cell

Researchers from solar manufacturer Hanwha Q CELLS and research institute Helmholtz-Zentrum Berlin (HZB) have announced a power conversion efficiency of 28.7% for a two-terminal perovskite-silicon tandem solar cell.

The device is based on a silicon bottom cell relying on Hanwha Q CELLS' monocrystalline Q.antum half cell technology and a perovskite-based top cell.

Read the full story Posted: Mar 08,2022

Researchers develop method to predict solar cell performance

A new study by HZB, Delft University of Technology, University of Potsdam, Yale University, Czech Academy of Sciences, NIST, University of Würzburg, Nihon University, Oregon State University, University of Warwick, Drexel University and University of California Irvine shows how terahertz (TRTS) and microwave spectroscopy (TRMC) can be used to reliably determine the mobility and lifetime of the charge carriers in semiconducting materials.

Using these measurement data it is possible to predict the potential efficiency of the solar cell in advance and to classify the losses in the finished cell.

Read the full story Posted: Mar 06,2022

Researchers fabricate semi-transparent perovskite solar cells for BIPV, automotive and more

An international research group has designed a semi-transparent perovskite solar cell that reportedly shows an improved open-circuit voltage and fill factor thanks to plasmonic enhancement.

The technique is based on the enhancement of the cell's electromagnetic field through metal nanostructures, which improves the device's low optical absorption in the visible spectrum. The research team designed the tech with applications in building-integrated photovoltaics (BIPV) in mind, but it can also be suitable for automotive and smart glasses.

Read the full story Posted: Mar 04,2022

An international team secures grant to develop perovskite-based X-ray detectors

A new project, one of eight that successfully secured funding from the Hebrew University of Jerusalem (HUJI) ' Zelman Cowen Academic Initiatives (ZCAI), Australia this year, will focus on developing X-ray detectors from metal halide perovskite materials.

Associate Professor Guohua Jia, from Curtin University's School of Molecular and Life Sciences, said X-ray detectors based on metal halide perovskites are highly sensitive, enabling a very low detection limit, meaning they could lower medical expenses and reduce the risk of radiation to patients.

Read the full story Posted: Mar 03,2022