December 2022

EPFL team uses unique modulators to improve the efficiency and stability of perovskite solar cells

A team of researchers at EPFL have developed a method that improves both power conversion efficiency and stability of solar cells based on pure iodide as well as mixed-halide perovskites. The new method aslo suppresses halide phase segregation in the perovskite material. The research was carried out by the groups of Professors Michael Grätzel and Ursula Rothlisberger at EPFL and led by Dr Essa A. Alharbi and Dr Lukas Pfeifer.

The method treats perovskite solar cells with two alkylammonium halide modulators that work synergistically to improve solar cell performance. The modulators were used as passivators, compounds used to mitigate defects in perovskites, which are otherwise promoting the aforementioned degradation pathways.

Read the full story Posted: Dec 28,2022

Researchers develop a novel approach for stable wide-bandgap perovskite solar cells

Researchers at the National Renewable Energy Laboratory (NREL) and University of Toledo have developed a new approach to manufacturing perovskite solar cells.

Developing highly stable and efficient perovskites based on a rich mixture of bromine and iodine is considered critical for the creation of tandem solar cells. However, issues with the two elements separating under solar cell operational conditions, such as light and heat, limit the device voltage and operational stability. This challenge is often made worse by the ready defect formation associated with the rapid crystallization of bromine-rich perovskite chemistry with antisolvent processes.

Read the full story Posted: Dec 26,2022

Researchers use perovskites to develop near-infrared light detection technology

Researchers from Japan's Teikyo University of Science and Toin University of Yokohama, under the JST Strategic Basic Research Program PRESTO, have developed a new near-infrared light sensor by using perovskite materials that convert weak near-infrared light to visible light.

Near-infrared light is used in a wide range of applications, such as in infrared cameras (night vision cameras), infrared communication (wireless communication), optical fiber communication, remote control, and biometric authentication. The detection of weak light in the near-infrared region and improvement of sensitivity are indispensable for the advancement in optical communication technology, medical diagnosis, environmental monitoring, and other fields. Compound semiconductors (e.g., InGaAs) having an optimal absorption band of 900–1700 nm, are used to detect light in the near-infrared region. However, these systems are expensive because of their complicated manufacturing process that involves the use of rare metals and is limited by noise interference. Moreover, such semiconductors do not exhibit visible light detection accuracy comparable to that achieved using silicon (Si) and other compounds.

Read the full story Posted: Dec 25,2022

Researchers achieve single component white LEDs based on lanthanide ions doped lead halide perovskite

Researchers from China's Jilin University have developed a promising method to fabricate white perovskite LEDs using lanthanides (Ln3+) ions doped CsPbCl3 perovskite nanocrystals (PeNCs).

Lead halide perovskite nanocrystals (PeNCs) have attracted extensive attention due to their high photoluminescence quantum yield (PLQY), adjustable bandgap, low cost, and excellent photoelectric properties. In recent years, perovskite based light emitting diodes (LEDs) have developed rapidly and become candidates for low-cost, solution-processing based solid-state lighting. White light perovskite LEDs are possible to be obtained by stacking different NCs with complementary emissions together in one film. However, the halide ion segregation and exchange lead to severe color instability and complex structure in mixed halide perovskite LED devices. Therefore, new technologies are required for the development of white light devices.

Read the full story Posted: Dec 23,2022

Researchers demonstrate efficient and stable formamidinium–caesium perovskite solar cells and modules from lead acetate-based precursors

Researchers from Monash University, Wuhan University of Technology, CSIRO Manufacturing, The Melbourne Centre for Nanofabrication and Foshan Xianhu Laboratory of the Advanced Energy Science and Technology Guangdong Laboratory have demonstrated "the first effective use of lead acetate as a precursor in making formamidinium-caesium perovskite solar cells". This could lead to a new way of creating durable, efficient perovskite photovoltaics at industrial scale.

Members of Exciton Science, based at Monash University, were able to create perovskite solar cells with 21% efficiency, which they say are the best results ever recorded for a device made from a non-halide lead source.

Read the full story Posted: Dec 22,2022

Researchers develop new strategy to improve efficiency and stability of flexible perovskite solar cells

Researchers from Saule Research Institute, Saule Technologies, Centre for Hybrid and Organic Solar Energy (CHOSE), CNR-SCITEC, Istituto Italiano di Tecnologia (IIT), Wroclaw University of Science and Technology, Bydgoszcz University of Science and Technology and Poznan University of Technology have demonstrated an effective strategy to improve the technical aspects of flexible perovskite solar cells,  improving the reliability and efficiency values of these devices.

The team applies large organic ammonium molecules for modifying a buried interface between a hole-transporting layer (HTL) and perovskite-absorbing material. With the 4-fluorophenethylammonium iodide (FPEAI), they achieved 18.66% efficiency for the large-area (1 cm2) flexible solar cell, a significant improvement over the pristine device without modification.

Read the full story Posted: Dec 21,2022

The MicroLED Industry Association to host a Perovskite microLED technology webinar

On March 27 the MicroLED Industry Association will host a private webinar on perovskite materials for the microLED industry. Perovskite materials hold great promise for the solar industry and in recent years we are seeing promising signs for the adoption of perovskites the display industry.

Researchers Fabricate Large-area Sky-blue PeLEDs image

The upcoming Seminar will feature four world-leading speakers, and will also be open to a Q&A session. We will learn more about the state-of-the-art perovskite research and development, with a focus of course on applications in the microLED industry - for both perovskite QDs and PeLEDs.

Read the full story Posted: Dec 20,2022

HZB researchers reclaim efficiency record with 32.5% silicon/perovskite tandem solar cell

Researchers at Helmholtz-Zentrum Berlin (HZB) recently announced a new tandem solar cell that converts 32.5% of the incident solar radiation into electrical energy.

The certifying institute European Solar Test Installation (ESTI) in Italy measured the tandem cell and officially confirmed this value which is also included in the NREL chart of solar cell technologies, maintained by the National Renewable Energy Lab, USA.

Read the full story Posted: Dec 19,2022

CubicPV to establish plant for 10 GW of conventional silicon wafer production, reports perovskite-related work is ongoing

U.S-based company CubicPV has announced plans to establish 10 GW of conventional mono wafer capacity in the United States. 

While CubicPV reports that its new factory will produce conventional silicon wafers, the company said it will continue research and development of its tandem modules, which reportedly offer more than 30% greater efficiency than the highest efficiency conventional modules. The design stacks two solar cells, with silicon on the bottom, powered by CubicPV’s Direct Wafer technology, and perovskite on the top, the company claims that the tandem design “will dramatically increase the power of every acre of solar deployed.”

Read the full story Posted: Dec 17,2022

Netherlands' province of North Brabant, the Brabant Development Agency (BOM) and TNO enter collaboration on perovskite solar cells and integrated solar energy products

The Netherlands' province of North Brabant, the Brabant Development Agency (BOM) and TNO – partner in Solliance – have signed a cooperation agreement for perovskite solar cells and integrated solar energy products. 

At the Brainport Industry Campus (BIC) in Eindhoven, TNO is working on flexible solar energy laminates that can then be processed into components for buildings, infrastructure and vehicles. The research line was devised by TNO and built by partners from the business community – including MAAN and Duflex – with financial support from the Ministry of Economic Affairs and Climate. The line of research will also play a major role in the European project MC2.0, which will start in January 2023 under the leadership of TNO and for which 20 partners from different countries will provide input. In parallel, the research program on industrialize production of perovskites, is running. The goal is to bring both studies together in mass customization based on perovskite.

Read the full story Posted: Dec 16,2022