Researchers at the College of Materials Science and Engineering at Nanjing University of Science and Technology in China have developed a technique that greatly enhances perovskite QLEDs' performance and stability compared to single interface processing.

New passivation approach yields efficient QDLEDs imageThe structure of QLED based on QD films passivated without (b) and with passivation (c). Image from Nature Communications

The team proposed a bilateral passivation strategy through passivating the top and bottom interface of the QD film with organic molecules.

Besides QLEDs, this kind of bilateral passivation strategy can be widely applied to other types of perovskite materials, and other optoelectronic devices including solar cells, and photodetectors.

Interface molecular passivation has been widely used in perovskite-based devices, resulting not only in improved effective radiation recombination, but also enhanced stability. However, most work today only focused on the top surface of the perovskite film.

"Our group has been committed to the research of perovskite QLEDs since our first report of all organic halide perovskite QLEDs back in 2015, and in recent years we have done a lot of work to improve the their performance," says Jizhong Song, a Professor at Nanjing University. "The motivation for this recent work happened more or less by chance: When we tried to improve the performance of the device through interface processing, we found that the introduced organic molecules on either the top or bottom interface could improve the device performance. So we wanted to see what would happen when both interfaces were passivated at the same time? Obviously, the result is amazing."

This is the first time, according to the team, that bilateral passivation has been applied to perovskite QLEDs.

The researchers note that it is well known that, since the perovskite layer is at the center of the sandwich structure in practical optoelectronic devices, both the top and bottom surface of the QD film may experience the interface problems of defects and other deposited materials affecting the carrier behavior inside the film.

"What we found is that the interface treatment on both sides of perovskite QD film is effective to improve the efficiency and stability of the film and consequently QD-based LEDs," Song points out.

The team's findings could advance the field of perovskite QLED in two aspects. Firstly, the sharp attenuation of fluorescence is always a severe problem when the colloidal QDs transform into the QD solids; this is because massive defects are inevitably introduced during the film-forming process. This may lead to the formation of non-radiative recombination centers, which will deteriorate the efficiency and stability of QD-based device. The proposed bilateral passivation strategy for QD film can effectively solve this problem.

Secondly, interface passivation has always been an important method for planar devices. However, most research work only focused on one side of the interface, especially the top-side. Whether from the perspective of passivating defects or matching energy levels, simultaneous regulation of both top and bottom interfaces will be helpful for improving device performance.

The researchers report that their passivated QD films exhibit high exciton recombination features with a photoluminescence quantum yield of 79%, and the corresponding LEDs have a high electro-optic conversion efficiency with an EQE of 18.7%.

"Interestingly" Song notes, "the passivation approach makes the QD materials and LEDs exhibit a higher stability. For example, the T50 operational lifetime (the time taken for the current efficiency to drop to half its initial value) of 15.8 hours for QLEDs based on QD films passivated by a phosphine oxide molecule is a factor of 20 longer than the control devices (0.8 hours)."

Regardless of these results, the stability of perovskite QLEDs still remains far from the requirements of actual commercial production and application.

"We made a bit of progress in this work and our next stage steps will be to improve the stability of perovskite QLEDs on the basis of our current research," Song concludes.