Phosphorene may enable more sustainable and efficient perovskite solar cells

An international team of clean chemistry researchers, led by Professor Joseph Shapter and Flinders University, has made very thin phosphorene nanosheets for low-temperature perovskite solar cells (PSCs) using the rapid shear stress of the University's revolutionary vortex fluidic device (VFD). This new nanomaterial made from phosphorus, may turn out to be a key ingredient for more sustainable and efficient next-generation PSCs.

'Silicon is currently the standard for rooftop solar, and other solar panels, but they take a lot of energy to produce them. They are not as sustainable as these newer options,' says adjunct Professor Shapter, now at University of Queensland.

'Phosphorene is an exciting material because it is a good conductor that will absorb visible light. In the past most non-metallic materials would have one property but not both,' he says.

'We've found an exciting new way to convert exfoliated black phosphorus into phosphorene which can help produce more efficient and also potentially cheaper solar cells,' says Dr. Christopher Gibson, from the College of Science and Engineering at Flinders University.

'Our latest experiments have improved the potential of phosphene in solar cells, showing an extra efficiency of 2%-3% in electricity production.'

Research into making high quality 2D phosphorene in large quantities ' along with other future materials such as graphene ' are paving the way to more efficient and sustainable production with the use of the SA-made VFD, near-infrared laser light pulses, and even an industrial-scale microwave oven.

The work with phosphorene explored the addition of different atoms to the matrix and showed very promising results in catalysis, particularly in the area of water splitting to produce hydrogen and oxygen.

Posted: Jun 23,2019 by Roni Peleg