Perovskite/CIGS stacked solar modules reach 17.8% efficiency

Researchers from Karlsruhe Institute of Technology (KIT), ZSW and IMEC presented at the PSCO international conference a prototype of the new solar module using thin-film technology. According to the researchers, an efficiency of 17.8% has been achieved in this prototype of a perovskite/CIGS tandem thin-film solar module, exceeding the efficiency of individual perovskite and CIGS solar modules for the very first time.

To create the new solar module, the researchers used a stack module. By merging both perovskite and CIGS into one module, the new structure could benefit from the advantages of both technologies. The upper semitransparent layer of the model is made of perovskite, which absorbs high solar energy. Meanwhile, the lower CIGS layer is responsible for infrared conversion. Having an area of 3.67 square meters, the stacked perovskite/CIGS model is also designed to meet industrial needs. It features a monolithic interconnection scheme using 4 and 7 module cell stripes. Unlike other small-scale solar cells, the new stacked solar module can be interconnected for several square meters through laser processing.

Semi-transparent perovskite PV modules created by imec

Nanoelectronics research center imec has presented what is thought to be the first-ever semi-transparent perovskite PV-module, achieving power conversion efficiencies up to 12%. This technology may enable semi-transparent PV-windows and other such advanced applications. Moreover, combining these semitransparent perovskite modules with Si solar cells, an unprecedented 20.2% in power conversion efficiency for a perovskite/Si stacked solar module was achieved.

The semi-transparent perovskite modules of imec realized by scalable coating techniques showed efficiencies of 12% on sizes as large as 4 cm2 and 10 % on sizes as large as 16cm2, a world-best achievement in this domain.