U.S researchers find new type of electric field effect that controls light emission from perovskite devices

Researchers from Rutgers University, University of Minnesota and University of Texas at Dallas in the U.S have discovered a new type of electric field effect that can control light emission from perovskite devices.

U.S researchers find new type of electric field effect that controls light emission from perovskite devices image

The electric field effect usually refers to the modulation of electrical conductivity in a semiconductor by means of an applied voltage to a gate electrode and forms the basis of modern digital electronics. In a conventional field effect transistor (FET), the conductivity of a semiconductor layer can be turned on or off or gradually ramped up or down. Now, the research team has found that the photoluminescence (PL) of a perovskite device can be modulated in a similar manner. 'Our work reports a novel type of field effect in which PL, rather than conductivity, is tuned by an 'electric knob' ' the gate voltage,' explains Vitaly Podzorov, who led the research.

PL, which comes from the recombination of free electrons and holes generated in a semiconductor exposed to a light source such as a laser, is sensitive in some materials to external factors such as temperature, pressure, strain, or magnetic field. But the gradual, reversible control of PL by an applied voltage has not been observed before, say the researchers.

'We believe that our work is a significant breakthrough in optoelectronics based on emergent materials,' Podzorov told Materials Today.

The team had been looking for the conventional electric field effect in lead-halide perovskites, and fabricated electric-double-layer transistors (EDLTs) based on various lead-halide perovskites including CsPbBr3, MAPbBr3, and FAPbBr3 with an electrolyte gel replacing the insulating layer. Molecular ions within the electrolyte layer are mobile and can be polarized by applying a very small gate voltage. Anions accumulating near the surface of the semiconducting perovskite generate a strong electric field, which affects the rate of radiative recombination in the material and, therefore, the PL.

'The fields generated in EDLTs can typically be up to 100 times greater than fields generated in conventional FETs,' explains Podzorov, 'which allows to ramp up the carrier density in the semiconductor much more drastically than one can using a conventional FET.'

The ability to tune the PL intensity of a perovskite EDLT reversibly over a wide range simply via the gate voltage could be useful in many optoelectronic applications.

'If perovskites, where we have observed our PL gating effect, are ultimately used in optoelectronic applications for light emission, one can enhance or control their performance with an additional gate electrode,' points out Podzorov.

It is also possible that the PL of other emergent materials might be controllable in the same way.

Posted: Feb 17,2019 by Roni Peleg