Perovskite-Info: the perovskite experts

Perovskite-Info is a news hub and knowledge center born out of keen interest in the wide range of perovskite materials.

Perovskites are a class of materials that share a similar structure, which display a myriad of exciting properties like superconductivity, magnetoresistance and more. These easily synthesized materials are considered the future of solar cells, as their distinctive structure makes them perfect for enabling low-cost, efficient photovoltaics. They are also predicted to play a role in next-gen electric vehicle batteries, sensors, lasers and much more.

Recent perovskite News

Graphene boosts perovskite single crystal photodetector performance

The performance of photodetectors based on perovskite polycrystalline thin films is still considered to be at a distance from expected values. One reason is that the carrier transport at the interface is easily affected by grain boundaries and grain defects. Many research groups have tried to combine perovskite polycrystalline thin films with high-mobility, two-dimensional materials to improve device performance, and have achieved promising results, but the negative effects of perovskite polycrystalline grain boundaries still remain.

To solve this problem, a team led by Assoc. Prof. Yu Weili from Changchun Institute of Optics, Fine Mechanics and Physics (CIOMP) of the Chinese Academy of Sciences, and Prof. GUO Chunlei from the University of Rochester synthesized a low-surface-defect-density CH3NH3PbBr3 microplate through the inverse temperature crystallization strategy. They prepared an effective vertical structure photodetector combining a high-quality perovskite single crystal with monolayer graphene with high carrier mobility.

Swansea team reaches record efficiency for roll-to-roll printed perovskite solar cells

A recent study reported the highest efficiency ever recorded for full roll-to-roll printed perovskite solar cells (PSCs), marking a significant step on the way to cheaper and more efficient ways of generating solar energy.

The team at Swansea University's SPECIFIC Innovation and Knowledge Center, led by Trystan Watson, reported using a roll-to-roll fabrication method for four layers of slot-die coated PSCs. The PSCs gave the stable power output of 12.2 percent - the highest efficiency recorded for four layers of roll-to-roll printed PSCs to date.

Printed coatings enable more efficient solar cells

Researchers at Cambridge’s Department of Materials Science and Metallurgy, working with Imperial College London and the Solar Energy Research Institute of Singapore, have developed a method to print ultrathin coatings on perovskite-based solar cells, allowing them to work in tandem with silicon solar cells to boost efficiencies.

New method to print ultrathin coatings to improve PSCs image

Solar cells work by absorbing sunlight to produce clean electricity. But photovoltaics can absorb only a fraction of the solar spectrum, which limits their efficiencies. The typical efficiency of a solar panel is only 18-20%.

Researchers shed light on the origin of perovskite instability

Researchers in the Cava Group at the Princeton University Department of Chemistry have lifted the mystery surrounding the reasons for instability in the inorganic perovskite cesium lead iodide (CsPbI3), known for its potential in creating highly efficient solar cells.

Using single crystal X-ray diffraction performed at Princeton University and X-ray pair distribution function measurements performed at the Brookhaven National Laboratory, the Princeton researchers detected that the source of thermodynamic instability in the halide perovskite cesium lead iodide (CsPbI3) is the inorganic cesium atom and its “rattling” behavior within the crystal structure.

Microscopic structures could improve the efficiency of perovskite solar cells

An international research team, led by Stefan Weber from the Max Planck Institute for Polymer Research in Mainz, has found microscopic structures in perovskite crystals that can guide the charge transport in the solar cell.

Clever alignment of these electron highways could make perovskite solar cells more efficient. When solar cells convert sunlight into electricity, the electrons of the material inside the cell absorb the energy of the light. The electrons excited by the sunlight are collected by special contacts on the top and bottom of the cell. However, if the electrons remain in the material for too long, they can lose their energy again. To minimize losses, they should therefore reach the contacts as quickly as possible. Microscopically small structures in the perovskites - so-called ferroelastic twin domains - could be helpful in this respect: They can influence how fast the electrons move.

ANU team pushes forward the efficiency of solar-to-hydrogen production

Australian National University (ANU) researchers have managed to push forward the efficiency of solar-to-hydrogen production that bypasses electrolysers and avoids AC/DC power conversion and transmission losses. They have recently managed to reach 17.6% efficiency, achieved with perovskite-silicon tandem absorbers, and they say their process is open to further refinement that could see clean hydrogen production become cost competitive with other fuels, including brown hydrogen and gas, more quickly than expected.

Perovskite-Si dual-absorber tandem PEC cell for self-driven water splitting by ANU imagePerovskite-Si dual-absorber tandem PEC cell for self-driven water splitting. a) Schematic showing a perovskite solar cell wired to a Si photo-cathode in tandem, and a DSA anode. b) A representative general energy band diagram. Image: ANU

Australian National University (ANU) researchers, in a newly-released study lead by Dr. Siva Krishna Karuturi and Dr. Heping Shen, state that although PV modules have become a commercially viable method large-scale renewable energy generation, “Achieving global renewable energy transition further relies on addressing the intermittency of solar electricity through the development of transportable energy storage means.”

Taiwanese team develops new production equipment for manufacturing large-area p-i-n type perovskite solar cells

The New Energy Center at National Taiwan University and Taiwanese PV production equipment provider E-Sun Precision Industrial have developed new production equipment to manufacture large-area p-i-n type perovskite solar cells.

Researchers from both entities said the machine can facilitate the production of low-cost perovskite cells through the MK-20 once-through process. The manufacturing process, which is based on slot-die coater and fast thermal processor (FTP) tech, is fully automatic and can currently handle small-quantity sample production.