Perovskite-Info: the perovskite experts

Perovskite-Info is a news hub and knowledge center born out of keen interest in the wide range of perovskite materials.

Perovskites are a class of materials that share a similar structure, which display a myriad of exciting properties like superconductivity, magnetoresistance and more. These easily synthesized materials are considered the future of solar cells, as their distinctive structure makes them perfect for enabling low-cost, efficient photovoltaics. They are also predicted to play a role in next-gen electric vehicle batteries, sensors, lasers and much more.

Recent perovskite News

CAS team fabricates high-efficiency large-area perovskite solar module using slot-die coating

A research group led by Prof. LIU Shengzhong from the Dalian Institute of Chemical Physics (DICP) of the Chinese Academy of Sciences (CAS) has reported the fabrication of high efficiency large-area perovskite solar module using slot-die coating with high-pressure nitrogen-extraction (HPNE) and effective passivation strategy.

Slot-die coating is a promising deposition technique due to its advantages in low cost, high throughput, continuous roll-to-roll fabrication. However, it remains a challenge to control thin film uniformity over a large area at thickness as thin as 500 nm while maintaining crystallization quality.

2D perovskite derivative has potential for scalable valleytronic devices

Rice University and Texas A&M University researchers have found that a 2D derivative of perovskite could make computers faster and more energy-efficient. Their material has the ability to enable the valleytronics phenomenon, which is known as a possible platform for advanced information processing and storage.

The lab of materials scientist Jun Lou of Rice's Brown School of Engineering synthesized a layered compound of cesium, bismuth and iodine that is able to store the valley states of electrons, but only in the structure's odd layers. These bits can be set with polarized light, and the even layers appear to protect the odd ones from the kind of field interference that bedevils other perovskites, according to the researchers.

Florida State University team deepens understanding of perovskite degradation mechanisms to improve stability of solar cells

Florida State University (FSU) researchers are working to better understand the fundamental processes in perovskites. As art of this task, they found that small tweaks to the chemical makeup of the materials as well as the magnitude of the electrical field it is exposed to can greatly affect the overall material stability.

Understanding the effect of light and temperature on the optical properties and stability of mixed-ion halide perovskites image

"How can we make perovskites more stable under real-world conditions in which they'll be used?" FSU Assistant Professor of Chemistry and Biochemistry Lea Nienhaus said. "What is causing the degradation? That's what we're trying to understand. Perovskites that don't degrade quickly could be a valuable tool for obtaining more energy from solar cells."

Perovskite QD films get closer to market - Avantama qualifies its green pQD display film

An exciting application for perovskite QDs, which is likely to be the first commercial adoption of pQDs, is for the display market - films that convert blue LED LCD backlight to green.

Switzerland-based nanomaterial developer Avantama told us that the company passed the OEM qualification with its green pQD film, together with a KSF phosphor solution on the LED chip. Avantama expects the first commercial LCD display to adopt this solution to hit the market in 2021.

New perovskite-based nanocatalyst shown efficient at converting greenhouse gases into hydrogen

Researchers at UNIST, POSTECH and the University of Pennsylvania have created a new perovskite-based nanocatalyst that can be used to recycle major greenhouse gases, such as methane (CH4) and carbon dioxide (CO2), into valuable hydrogen (H2) gas.

The new catalyst is hoped to promote various waste-to-energy conversion technologies, as it has over twice the conversion efficiency from CH4 to H2 than the traditional electrode catalysts.

Australian team tackled light-induced segregation issue using high-intensity light

Researchers at Monash University, University of Sydney and University of Melbourne in Australia have addressed a fundamental challenge standing before massive commercialization of perovskite solar cells - light-induced phase segregation, in which illumination, such as sunlight, disrupts the carefully arranged composition of elements within mixed-halide perovskites.

Light-induced segregation often leads to instability in the material’s bandgap, interfering with the wavelengths of light absorbed, while reducing charge-carrier conduction and the efficiency of devices.

Researchers address the blue light issue of perovskite-based LEDs

A team of researchers at the Ulsan Institute of Science and Technology (UNIST) and Korea University, led by Professors Myung-Hoon Song, Sang-Gyu Kwak and Han-Young Woo, recently announced the development of a PeLED - a perovskite-based LED device, that emits blue light.

UNIST researchers resolve display blue light problem in PeLEDs image

The team explained that the perovskite light emitting device, which uses perovskite as a color material, is more than three times more efficient than before and has a high color purity, enabling a clear blue color.