Perovskite-Info: the perovskite experts

Perovskite-Info is a news hub and knowledge center born out of keen interest in the wide range of perovskite materials.

Perovskites are a class of materials that share a similar structure, which display a myriad of exciting properties like superconductivity, magnetoresistance and more. These easily synthesized materials are considered the future of solar cells, as their distinctive structure makes them perfect for enabling low-cost, efficient photovoltaics. They are also predicted to play a role in next-gen electric vehicle batteries, sensors, lasers and much more.

Recent perovskite News

Chinese researchers use excimer laser to improve perovskite solar cells

Researchers at the Hefei Institutes of Physical Science obtained excellent performance of perovskite solar cells (or PSCs) by excimer laser.

Several problem hinder the progress of PSCs. For example, surface defects decrease their performance, and the preparation process of the common ETL of PSCs requires annealing and crystallization at 400 – 500 °C, which exceeds the temperature that the common flexible substrates can withstand, and restricts the development of flexible PSCs. To address the above problems, scientists introduced excimer laser into the research of perovskite solar cells (PSCs).

KAUST team reports 26.2% PCE for 4T perovskite/silicon tandems enabled by IZRO electrodes

Parasitic absorption in transparent electrodes is one of the main roadblocks to enabling power conversion efficiencies (PCEs) for perovskite‐based tandem solar cells beyond 30%. To reduce such losses and maximize light coupling, the broadband transparency of such electrodes should be improved, especially at the front of the device.

Improves NIR response in si/per tandems image

Erkan Aydin and coworkers from KAUST Photovoltaics Laboratory have recently shown the excellent properties of Zr‐doped indium oxide (IZRO) transparent electrodes for such applications, with improved near‐infrared (NIR) response compared to conventional tin‐doped indium oxide (ITO) electrodes. Optimized IZRO films feature very high electron mobility (up to ≈77 cm2 V−1 s−1), enabling highly infrared transparent films with a very low sheet resistance (≈18 Ω −1 for annealed 100 nm films). For devices, this translates to a parasitic absorption of only ≈5% for IZRO within the solar spectrum (250–2500 nm range), to be compared with ≈10% for commercial ITO.

The new EPKI initiative will push forward perovskite technologies

For the purpose of decarbonizing the energy-mix, which is becoming a priority challenge for European countries among others, European universities, research institutes and industries involved in the development of perovskite technologies have agreed on the creation of a collaborative platform: the EPKI.

Soliiance forms EPKI partnership image

This initiative is dedicated to gathering all significant parties working in this field and is pursuing the following objectives:

  • Raise the awareness on perovskite based photovoltaics by conveying a common vision through the editing of a common European perovskite whitepaper,
  • Support and initiate next generation PV industrial initiatives,
  • Facilitate joint-research programs and synergies among universities, institutes and companies.

University of Toledo team reports breakthrough in new material for all perovskite tandem solar cells

Researchers from the University of Toledo have reported progress that may push the performance of tandem perovskite solar cells to new levels. Working in collaboration with the U.S. Department of Energy's National Renewable Energy Lab and the University of Colorado, Dr. Yanfa Yan, UToledo professor of physics, envisions that the new high efficiency tandem perovskite solar cell will be ready to debut in full-sized solar panels in the consumer market in the near future.

"We are producing higher-efficiency, lower-cost solar cells that show great promise to help solve the world energy crisis," Yan said. "The meaningful work will help protect our planet for our children and future generations. We have a problem consuming most of the fossil energies right now, and our collaborative team is focused on refining our innovative way to clean up the mess."

Eindhoven team finds that the addition of fluoride boosts the stability of perovskite solar cells

Researchers at the Eindhoven University of Technology in the Netherlands have found a way to address the issue of stability in perovskite solar cells by adding a small amount of fluoride during the production process, which was found to increase the stability of such cells.

Fluoride stabilizes perovskite solar cells imageFluoride stablizes perovskite solar cells by encouraging the formation of strong hydrogen bonds and ionic bonds on the surface of the perovskite material.

The scientists found the fluoride ions form a protective layer around perovskite crystals, preventing the ill effects of light, heat and moisture. "Our work has improved the stability of perovskite solar cells considerably," said Shuxia Tao, assistant professor at Eindhoven University of Technology's Center for Computational Energy Research. "Our cells maintain 90% of their efficiency after 1,000 hours under extreme light and heat conditions. This is many times as long as traditional perovskite compounds. We achieve an efficiency of 21.3%, which is a very good starting point for further efficiency gains."

UK researchers achieve record PSC stability using waterproof graphite-based coating

Researchers at the University of Bath have applied a waterproof graphite-based coating to a perovskite cell intended to power the production of hydrogen underwater. The cell reportedly worked underwater longer than expected, and may open the door to a cheap and sustainable way of making hydrogen fuel from water using sunlight.

Researchers used graphite film to coat perovskite solar cells and waterproof them image

“The coated cells worked underwater for 30 hours – ten hours longer than the previous record,” the scientists wrote, adding the glue sandwiching the coat to the cells began to fail after 30 hours. They believe stronger glue could help the cell stabilize for longer. “We achieve a record stability of 30h in aqueous electrolyte under constant simulated solar illumination, with currents above 2 mA cm−2 (milliamperes per cm−2) at 1.23 VRHE,” they added.

Interview with Greatcell Solar Materials' GM Yanek Hebting

In December 2018, Greatcell Solar declared bankruptcy, a sad ending to a once promising perovskite venture. However, prior to this bankruptcy (in September 2018), the Production Division of Greatcell Solar was sold off, in a new business called Greatcell Solar Materials (GSM).

GSM's materials image

GSM manufactures and supplies its products like perovskite precursors, silver inks, various dopants and more to the scientific community. The company's general manager, Dr. Yanek Hebting, kindly agreed to answer some of our questions regarding GSM's business and technology.