Perovskite-Info: the perovskite experts

Perovskite-Info is a news hub and knowledge center born out of keen interest in the wide range of perovskite materials.

Perovskites are a class of materials that share a similar structure, which display a myriad of exciting properties like superconductivity, magnetoresistance and more. These easily synthesized materials are considered the future of solar cells, as their distinctive structure makes them perfect for enabling low-cost, efficient photovoltaics. They are also predicted to play a role in next-gen electric vehicle batteries, sensors, lasers and much more.

Recent perovskite News

German scientists use NiOx to increase efficiency of perovskite solar cells

Scientists at Germany's Karlsruhe Institute of Technology (KIT) and the Innovation Lab in Heidelberg have developed a highly efficient hole conductor layer made of nickel oxide (NiOx) that can be deposited over a large area and leads to record efficiencies in solar cells with organometallic perovskites.

KIT scientists improve the efficiency of PSCs with NiOx image

The team achieved efficiencies of up to 16.1% for completely vacuum-processed perovskite solar cells. With inkjet-printed absorber layers, the scientists achieved an efficiency record of up to 18.5%. "Currently, deposition by rotary coating, for which efficiencies of more than 24% have been achieved, dominates development. However, this can practically not be transferred to large areas" says Tobias Abzieher, PhD student at KIT's Light Technology Institute (LTI).

Researchers encourage perovskite crystallization to create high-performance light-emitting diodes

Scientists at Linköping University (LiU), along with colleagues from China, have shown how to achieve efficient perovskite light-emitting diodes (LEDs). The researchers provide guidelines on fabricating high-quality perovskite light emitters, and consequently high-efficiency perovskite LEDs.

Interlayers help perovskite crystallisation for high-performance light-emitting diodes imageDifferent metal oxide layers affect the properties of the thin perovskite films. Credit: Charlotte Perhammar

The halide perovskites can be easily prepared by low-cost solution processing from precursor solution comprising metal halides and organic halides. The resulting perovskites reportedly possess excellent optical and electrical properties, making them promising candidates for various kinds of optoelectronic devices, such as solar cells, LEDs and photodetectors.

Penn State team finds unique edge states in 2D perovskites

Penn State researchers have found a new class of 2D perovskite materials with edges that are conductive like metals and cores that are insulating. The researchers said these unique properties may have applications in solar cells and nanoelectronics.

“This observation of the metal-like conductive states at the layer edges of these 2D perovskite materials provides a new way to improve the performance of next-generation optoelectronics and develop innovative nanoelectronics,” said Kai Wang, assistant research professor in materials science and engineering at Penn State and lead author on the study.

Advanced method finds that lead halide perovskites are not ferroelectric

Researchers at the Institute of Materials Science in Barcelona (ICMAB-CSIC) and the Helmholtz-Zentrum Berlin für Materialien und Energie (Germany) have used a unique microscopy technique to demonstrate that perovskites are not ferroelectric, as was thought.

The new technique, patented by CSIC in 2017, is the direct piezoelectric force microscopy (DPFM) which, for the first time, is used in lead halide perovskite solar cells.

KAUST team pushes PSCs forward by generating homogeneous and defect-free perovskite crystals

KAUST researchers have developed a synthetic approach that generates homogeneous and defect-free crystals that have the potential to fast-track the commercialization of perovskite solar cells.

KAUST team may advance PSCs with single crystal perovskites image

The performance and stability of solar cells depend on the morphology of the perovskite thin films, which act as light-harvesting layers in the devices. A major problem arises from the fact that existing perovskite solar cells usually consist of polycrystalline thin films that are highly disordered and defective, which prevents devices from achieving optimal performance.

CSoT demonstrates a 6.6" 384x300 OLED display that uses perovskite quantum dots for color conversion

China-based display maker China Star (CSoT, a subsidiary of TCL) demonstrated a 6.6-inch 384x300 OLED display that uses perovskite quantum dots as a color conversion film.

CSoT is using blue OLED emitter materials, and a perovskite layer to up-convert the color to green (this is a monochrome prototype - evidently a very early prototype). CSoT brands its perovskite-OLEDs as PE-OLED and we believe this is the first time a perovskite-enhanced display has been publicly demonstrated.

Oxford PV closes £65 million funding round

Oxford PV recently announced it has closed its Series D funding round. An additional £34 million, following the £31 million first close, brings the funding round total to £65 million.

The first close, announced in March 2019, included a significant new investment from Goldwind, the leading provider of integrated renewable energy solutions in China, as well as investment from existing shareholders including Equinor and Legal & General Capital. The additional funds include the major new investment from Meyer Burger, the leading photovoltaic equipment supplier, announced in March 2019, with the remaining investment coming from other new and existing investors.