Perovskite-Info: the perovskite experts

Perovskite-Info is a news hub and knowledge center born out of keen interest in the wide range of perovskite materials.

Perovskites are a class of materials that share a similar structure, which display a myriad of exciting properties like superconductivity, magnetoresistance and more. These easily synthesized materials are considered the future of solar cells, as their distinctive structure makes them perfect for enabling low-cost, efficient photovoltaics. They are also predicted to play a role in next-gen electric vehicle batteries, sensors, lasers and much more.

Recent perovskite News

Researchers develop a polymer film that reduces defects in perovskites

Researchers at the University of California, Los Angeles have used a polymer film to reduce defects in the light-absorbing perovskite, producing solar cells that are efficient and relatively robust.

Researchers develop a polymer film that reduces defects in perovskites image

The team explains that perovskites usually used in solar cells typically contain an organic cation and lead halide anions. But the heat treatment used to convert the perovskite’s precursors into a crystalline layer can also drive out some of these organic cations. This leaves defects in the material’s structure that hamper its performance and potentially make it less stable to moisture, heat, and even sunlight itself.

The Perovskite Handbook

Perovskite-Info is proud to present The Perovskite Handbook. This book is a comprehensive guide to perovskite materials, applications and industry. Perovskites are materials that share a similar structure, which display a myriad of exciting properties and are considered the future of solar cells, displays, sensors, lasers and more.

The Perovskite Handbook

Reading this book, you'll learn all about:

  • Different perovskite materials, their properties and structure
  • How perovskites can be made, tuned and used
  • What kinds of applications perovskites may be suitable for
  • What the obstacles on the way to a perovskite revolution are
  • Perovskite solar cells, their merits and challenges
  • The state of the perovskite market, potential and future

Collaborative team focuses on MA to better understand perovskite PV stability issues

Researchers from the University of Fribourg and École Polytechnique Fédérale de Lausanne in Switzerland, Pandit Deendayal Petroleum University in India and Benemérita Universidad Autónoma de Puebla in Mexico have revealed new clues about the stability of perovskite thin films and solar cells.

“Our chief aim is to stabilize perovskite solar cells for many years and decades,” explains Michael Saliba, principal investigator at the Adolphe Merkle Institute, University of Fribourg. “Without long-term stability, any commercialization efforts will fail.”

Lead-free halide double perovskites successfully made to emit warm white light

Researchers at Huazhong University of Science and Technology (HUST) in China, University of Toledo in the U.S, Monash University in Australia, Jilin University and Tsinghua University in China, the Dalian Institute in China and the University of Toronto in Canada have examined a lead-free double perovskite that exhibited stable and efficient white light emission. In its mechanism of action, the material produced self-trapped excitons (STEs) due to Jahn-Teller distortion of the AgCl6 octahedron in the excited state of the complex, observed when investigating exciton-phonon coupling in the crystal lattice.

Lead-free halide double perovskites successfully made to emit warm white light image

The research team stated that a fifth of global electricity consumption is based on lighting, and efficient and stable white-light emission with single materials is ideal for such applications. Photon emission that covers the entire visible spectrum is, however, difficult to attain with a single material. Metal halide perovskites, for instance, have outstanding emission properties but contain lead, and so yield unsatisfactory stability. The perovskite in this study is, therefore, lead-free.

Prof. Henry J. Snaith discusses perovskite PVs, their current status and future prospects

Scientific Video Protocols (SciVPro) is a no-fee, open access peer-reviewed video platform that publishes scientifically sound research from all areas of natural science and technology. The open availability of the video protocol on Youtube facilitates the dissemination of experimental details among the scientific community and the public at large, while promoting authors’ research activities and easing reproducibility of results.

SciVPro released a fascinating interview with the renowned Prof. Henry J. Snaith, Professor of Physics in the Clarendon Laboratory at the University of Oxford and Fellow of the Royal Society. He has pioneered the field of perovskite solar cells and published more than 300 papers. He is the founder and Chief Scientist Officer of Oxford Photovoltaics, which holds the largest perovskite patent portfolio worldwide and focuses on developing and commercializing perovskite PV technology.

German team develops new process for perovskite solar cells with improved stability

Scientists at the Martin Luther University of Halle Wittenberg have investigated a new process for perovskite solar cell production, which they say could allow for creation of perovskite thin film layers with better long-term stability than others have achieved.

German team develops new process for perovskite solar cells with improved stability image

The process, co-evaporation, is already widely used in other industries. It consists of heating precursor materials in a vacuum, until they evaporate, and then growing a layer of crystals onto a colder glass substrate.

Greatcell Solar provides financial updates

Greatcell logo imageGreatcell Solar has provided an update on matters relating to its current financial position.

Greatcell reports that significant progress has been achieved in recent weeks; An agreement has been reached with the Australian Renewable Energy Agency (ARENA) on variations to a previously signed funding agreement, which will result in a payment of $425,000 AUD (around $307,200 USD) to Greatcell.