Article last updated on: Nov 30, 2020

Perovskites are materials that share a crystal structure similar to the mineral called perovskite, which consists of calcium titanium oxide (CaTiO3).

Solutions of all-inorganic perovskite quantum dots, showing intense photoluminescence when illuminated with UV light

Depending on which atoms/molecules are used in the structure, perovskites can possess an impressive array of interesting properties including superconductivity, ferroelectricity, charge ordering, spin dependent transport and much more. Perovskites therefore hold exciting opportunities for physicists, chemists and material scientists.

Quantum dots (QDs), sometimes referred to as semiconducting nanocrystals (NCs), are miniscule particles of a semiconducting material with diameters in the range of 2-10 nanometers (10-50 atoms). Quantum dots have properties labeled as intermediate between bulk semiconductors and discrete atoms or molecules. Their optoelectronic properties change as a function of both size and shape. QDs demonstrate optical and electronic properties different from those of larger particles. In fact, QDs tend to exhibit quantum size effects in their optical and electronic properties, like tunable and efficient photoluminescence (PL), with narrow emission and photochemical stability. This is why QDs have been incorporated as active elements in a wide variety of devices and applications, some of which are already commercially available, such as QD-based displays.

Perovskite quantum dots (PQDs) are a class of quantum dots based on perovskite materials. While these are relatively new, they have already been shown to have properties matching or surpassing those of the metal chalcogenide QDs: they are more tolerant to defects and have excellent photoluminescence quantum yields and high colour purity. Such attractive properties are extremely suited for electronic and optoelectronic applications and so perovskite quantum dots have significant potential for real world applications, some of which are already emerging, including LED displays and quantum dot solar cells.



The latest Perovskite QD news:

Researchers use quantum dots to boost perovskite solar cell efficiency & scalability

Researchers at EPFL, Zurich University of Applied Sciences, Ulsan National Institute of Science and Technology, University of Ulsan and Uppsala University have designed an innovative way to increase the performance of perovskite solar cells and maintain it at a high level even at large scales. The new approach replaces the electron-transport layer with a thin layer of quantum dots.

With this new approach, the team, led by Professor Michael Grätzel at EPFL and Dr Dong Suk Kim at the Korea Institute of Energy Research, addressed one of the major obstacles facing the commercialization of perovskite solar cells - the fact that their power-conversion efficiency and operational stability drop as they scale up, making it a challenge to maintain high performance in a complete solar cell.

DSCC: perovskite-based QD films for LCD applications could enter the market in 2022

Display market research firm DSCC says that perovskite-based QD films for LCD display applications could enter the market in 2022. DSCC says that perovskite materials could increase efficiency and color gamut compared to current solutions.

TCL 75M10 TV with Zhijing Nanotech's perovskite film photo

Lasy year we reported that Zhijing Nanoech has concluded a successful pilot with TCL, which has produced 500 75-inch QD-enhanced LCD TVs with Zhijing's PQDF films. The company hopes to achieve a design win with TCL for mass production.

The Perovskite for Displays Market Report updated to January 2022

Perovskite-Info is proud to announce an update to our Perovskite for the Display Industry Market Report. This market report, brought to you by the world's leading perovskite and OLED industry experts, is a comprehensive guide to next-generation perovskite-based solutions for the display industry that enable efficient, low cost and high-quality display devices. The report is now updated to January 2022.

Reading this report, you'll learn all about:

  • Perovskite materials and their properties
  • Perovskite applications in the display industry
  • Perovskite QDs for color conversion
  • Prominent perovskite display related research activities

The report also provides a list of perovskite display companies, datasheets and brochures of pQD film solutions, an introduction to perovskite materials and processes, an introduction to emerging display technologies and more.

The Perovskite for Displays Market Report updated to October 2021

Perovskite-Info is proud to announce an update to our Perovskite for the Display Industry Market Report. This market report, brought to you by the world's leading perovskite and OLED industry experts, is a comprehensive guide to next-generation perovskite-based solutions for the display industry that enable efficient, low cost and high-quality display devices. The report is now updated to October 2021.

Reading this report, you'll learn all about:

  • Perovskite materials and their properties
  • Perovskite applications in the display industry
  • Perovskite QDs for color conversion
  • Prominent perovskite display related research activities

The report also provides a list of perovskite display companies, datasheets and brochures of pQD film solutions, an introduction to perovskite materials and processes, an introduction to emerging display technologies and more.

Ergis develops customizable high-performance pQD barrier films

Last year, Poland-based Ergis Group launched an OLED encapsulation film platform called Ergis noDiffusion®. The company is currently testing its film solutions at customer sites in Asia, the EU and the US, and it is now starting to offer the same platform for the protection of quantum dot films, including perovskite-based QDs for use in display and lighting applications.

Ergis noDiffusion QD barrier image

These new films can be tuned to fit specific needs. Ergis can deploy its films on several substrate types, with varying film thickness, and the barrier properties can be tuned to be between 10-6 to 10-3. This means that custom films can be created to suit the specific sensitivity of the pQDs for water vapor and to achieve specific product lifetime or other required properties.