EPFL

EPFL-led team uses additives to improve the stability and efficiency of perovskite solar cells

A team of researchers, led by Professor Michael Grätzel at EPFL and Xiong Li at the Michael Grätzel Center for Mesoscopic Solar Cells in Wuhan (China), have developed a technique that addresses stability concerns of perovskite solar cells (PSCs) and increases their efficiency.

The researchers introduced a phosphonic acid-functionalized fullerene derivative into the charge-transporting layer of the PSC as a “grain boundary modulator”, which helps strengthen the perovskite crystal structure and increases the PSC’s resistance to environmental stressors like heat and moisture.

Read the full story Posted: Jan 22,2023

Researchers turn to facet engineering for more stable perovskite solar cells

Researchers at Switzerland's EPFL and Sungkyunkwan University in Korea have addressed the issue of perovskite solar cells' stability. They focused on the degradation of perovskite thin films, which can be damaged by exposure to moisture, heat, and light. The team looked at two specific crystal facets (the crystal's flat surface), characterized by a particular arrangement of atoms. The arrangement of atoms on these facets can affect the properties and behavior of the crystal, such as its stability and its response to external stimuli like moisture or heat.

The researchers looked at the (100) and (111) facets of perovskite crystals. The (100) facet is a plane that is perpendicular to a crystal's c-axis with its atoms arranged in a repeating pattern in the form of a square grid. In the (111) facet the atoms are arranged in a triangular grid. The study found that the (100) facet, which is most commonly found in perovskite thin films, is particularly prone to degradation as it can quickly transition to an unstable, inactive phase when exposed to moisture. In contrast, the (111) facet was found to much more stable and resistant to degradation.

Read the full story Posted: Jan 13,2023

EPFL team uses unique modulators to improve the efficiency and stability of perovskite solar cells

A team of researchers at EPFL have developed a method that improves both power conversion efficiency and stability of solar cells based on pure iodide as well as mixed-halide perovskites. The new method aslo suppresses halide phase segregation in the perovskite material. The research was carried out by the groups of Professors Michael Grätzel and Ursula Rothlisberger at EPFL and led by Dr Essa A. Alharbi and Dr Lukas Pfeifer.

The method treats perovskite solar cells with two alkylammonium halide modulators that work synergistically to improve solar cell performance. The modulators were used as passivators, compounds used to mitigate defects in perovskites, which are otherwise promoting the aforementioned degradation pathways.

Read the full story Posted: Dec 28,2022

Researchers achieve high-performance flexible all-perovskite tandem solar cell

Researchers from Empa, EPFL, Sichuan University, Jiaxing University, Soochow University, University of Cologne, University of Potsdam, HZB and the University of Oxford have developed a flexible all-perovskite tandem solar cell with a mitigated open-circuit voltage deficit and reduced voltage loss. The team reported flexible tandem efficiency of almost 24% on small area cells using the spin coating method.

Flexible all-perovskite tandem cells are currently less developed than rigid cells, due to a difficult deposition process for the cell's functional layers and a lower open-circuit voltage. This is due to high defect densities within the perovskite absorber layer and at the perovskite/charge selective layer interface.

Read the full story Posted: Oct 22,2022

Researchers perform design and cost analysis of 100 MW perovskite solar panel manufacturing process in different locations

Scientists from Switzerland's EPFL and the Toyota Motor Corporation have prepared a detailed analysis of the projected costs of designing and operating a 100 MW perovskite solar cell production line in various locations, taking under consideration factors like labor and energy costs as well as all materials and processing. The team found that perovskite PV could be cost-competitive with other technologies even at much smaller scale, but noted that this still depends on the tech proving its long-term stability, and impressive achievements in research being successfully transferred to commercial production.

While perovskite materials have been repeatedly demonstrating their potential for low-cost, high-efficiency solar energy with lower energy fabrication compared to silicon PV technology, there are still many different possibilities regarding the form these commercial products could take, and the materials they could contain - with more than one option that could prove commercially viable.

Read the full story Posted: Sep 04,2022

Researchers achieve 18.4% efficiency for 4T flexible perovskite-CIGS tandem mini-module

Researchers from Switzerland's Federal Laboratories for Materials Science and Technology (EMPA) and École Polytechnique Fédérale de Lausanne (EPFL) have designed a four-terminal tandem mini-module based on perovskite and copper, indium, gallium and selenium (CIGS) with an aperture area of around 2 cm2, and a geometric fill factor of over 93%.

Processing sequence of flexible NIR-transparent perovskite mini-module. Image from RRL Solar

The team reports that the key to efficient flexible perovskite-CIGS tandem modules is the development of near-infrared (NIR) transparent perovskite solar modules on a flexible polymer foil. To achieve these results, the researchers had to overcome the challenges of laser patterning on flexible substrates to realize the first all-laser scribed monolithically interconnected NIR-transparent perovskite mini-modules on polymer film. The perovskite mini-module used in the tandem panel was fabricated on a flexible polyethylene napthalathe (PEN) substrate mounted to a glass substrate in a p–i–n device architecture. This configuration, according to the research team, shows reduced absorption in the NIR region.

Read the full story Posted: Jul 23,2022

Researchers from EPFL and CSEM achieve 31.25% efficiency for tandem perovskite-silicon solar cell

Researchers from the Swiss Center for Electronics and Microtechnology (CSEM) and the École polytechnique fédérale de Lausanne (EPFL) have reported a power conversion efficiency exceeding 30% for a 1 cm2 tandem perovskite-silicon solar cell, which represents a world record for a PV device of this kind. The team achieved an efficiency of 30.93% for a 1 cm2 solar cell based on high-quality perovskite layers from solution on a planarized silicon surface and an efficiency of 31.25% on a cell of the same size and fabricated with a hybrid vapor/solution processing technique compatible with a textured silicon surface.

“These results constitute two new world records: one for the planar and one for the textured device architecture,” the researchers explained, noting that both efficiencies were certified by the US Department of Energy's National Renewable Energy Laboratory (NREL). “The latter approach provides a higher current and is compatible with the structure of current industrial silicon solar cells”. Unfortunately, the researchers did not disclose technical details on how they improved the efficiency of both devices.

Read the full story Posted: Jul 07,2022

Researchers use a 2D perovskite passivation layer as an electron blocking layer in 18.5%-efficient carbon-electrode perovskite solar cell

Researchers from Fraunhofer Institute for Solar Energy Systems ISE, EPFL, Korea Basic Science Institute (KBSI) and Morocco's Abdelmalek Essaadi University have developed a perovskite solar cell with a carbon electrode that achieved 18.5% efficiency.

Electron blocking for 18.5%-efficient carbon-electrode perovskite solar cell imageSchematic diagram of the investigated low-temperature carbon electrode-based PSC with 3D/2D perovskite treated by OAI. Image from study

The solar cell also reportedly retained 82% of their efficiency after 500 hours of continuous illumination. The cell is produced via all low-temperature processes that could likely be scaled into low-cost, large-scale manufacturing ' making the approach attractive despite achieving lower efficiency than record-setting cells.

Read the full story Posted: May 02,2022

EPFL team develops tandem solar cells with 29.2% efficiency

EPFL scientists in Neuchâtel have reported a tandem solar cell that can deliver a certified efficiency of 29.2%. This achievement was made possible by combining a perovskite solar cell with a textured silicon solar cell.

One obstacle the team encountered was finding a way to evenly coat the silicon surface'which is intentionally rough, or textured'with a thin film of halide perovskites. A textured surface is used in order to minimize light reflection. This kind of system can already be found in all commercially available crystalline silicon cells.

Read the full story Posted: Apr 30,2022

Researchers design ionic liquid-based perovskite solar cell with 22.86% efficiency

Researchers from EPFL, Tianjin University, Nanjing Tech University, The University of Tokyo, Shanghai University and Toyota Motor Corporation have used ionic liquids (ILs) with halide anions as additives to improve the performance and stability of a perovskite solar cell.

Ionic liquid-based perovskite solar cell with 22.86% efficiency imageImage from study in Cell Reports Physical Science

Ionic liquids are viewed as a "greener" alternative to organic solvents due to their lower volatility and flammability, as well as to their wide liquid-state window.

Read the full story Posted: Apr 27,2022