Quantum Solutions demonstrated its perovskite QDs at Displayweek 2018

Saudi Arabia-based Quantum Solutions demonstrated its perovskite quantum dots (with a focus on its green-colored ones) at SID Displayweek 2018, in addition to its Lead-Sulfide (PbS) QDs.

Quantum Solutions says it uses a flow reactor to create uniform and high-quality QDs at high yields and minimal waste. The company also develops encapsulation technology to protect the perovskite QDs. Their current materials have a lifetime of around 8,000 hours.

Avantama demonstrates its perovskite QDs at SID Displayweek 2018

Switzerland-based Avantama demonstrated its perovskite quantum dots at Displayweek 2018. QDs are currently used as color down-conversion films to turn the emission of blue LEDs to white light.

Currently used QDs are either Cadmium-based or Indium-based, and Avantama claims that its pQDs outperform both technologies by a wide margin (3X CdSe, 12x InP), which means that using these will enable much more efficient QD-LCDs. Of course pQDs contain lead, but the amount is very small and it is way below the thresholds required by the EU and other countries.

Researchers use a micro-LED covered with perovskite QDs to achieve high-speed visible light communication

Researchers from Fudan University in China have developed a high-bandwidth white-light based system made from a blue gallium nitride (GaN) micro-LED with yellow-emitting perovskite quantum dots. This system could open the door to high-speed real-time visible light communication (VLC).

The researchers used a 80 x 80 um blue-emitting micro-LED that has a modulation bandwidth of about 160 MHz and a peak emission wavelength of ~445 nm. The white-light system (following the perovskite QD conversion) achieves 85 Mhz - which means a maximum data rate of 300 Mbps.

Emberion team design perovskite-QDs that combine with graphene to create unique photodetectors

Emberion researchers have shown that colloidal quantum dots (QDs) combined with a graphene charge transducer can provide a photoconducting platform with high quantum efficiency and large intrinsic gain, yet compatible with cost-efficient polymer substrates. The team demonstrated methods to couple large QDs (>6 nm in diameter) with organometal halide perovskites, enabling hybrid graphene photo-transistor arrays on plastic foils.

Emberion team uses graphene and perovskite QDs for advanced photodetctors

The resulting arrays simultaneously exhibited a specific detectivity of 5 × 1012 Jones and high video-frame-rate performance. PbI2 and CH3NH3I co-mediated ligand exchange in PbS QDs improved surface passivation and facilitated electronic transport, yielding faster charge recovery, whereas PbS QDs embedded into a CH3NH3PbI3 matrix produce spatially separated photocarriers leading to large gain.