Researchers from the University of Surrey, University of Toronto, University of Stuttgart and Ulsan National Institute of Science and Technology have found that stabilizing the perovskite "photoactive phases" – the specific part of the material that is responsible for converting light energy into electrical energy – is the key step towards extending the lifespan of perovskite solar cells. The stability of the photoactive phase is important because if it degrades or breaks down over time, the solar cell will not be able to generate electricity efficiently. Therefore, stabilizing the photoactive phase is a critical step in improving the longevity and effectiveness of perovskite solar cells.
In the study, the team assessed the current understanding of these phase instabilities and summarized the approaches for stabilizing the desired phases, covering aspects from fundamental research to device engineering. The scientists subsequently analyzed the remaining challenges for perovskite PVs and demonstrated the opportunities to enhance phase stability with ongoing materials discovery and in operando analysis. Finally, the team proposed future directions towards upscaling perovskite modules, multijunction PVs and other potential applications.