Oxford PV pushes toward commercializing tin-using perovskite solar cells

Oxford PV has shared its plan to bring to market a tin-using, perovskite-based solar cell by the end of next year, according to International Tin Association (ITA). Compared to lead, it is hoped that tin can be a safer, more efficient element in the photovoltaic cell.

“Our perovskite solar cell technology will allow silicon solar cell and module manufacturers to break through their performance barrier,” Oxford PV says on its website. Voices have been heard that Oxford PV has managed to successfully the stability issue and can now bring the technology to the market.

Collaborative team makes a major step forward in the search for stable and practical perovskite-based photovoltaic devices

A collaborative research team from Los Alamos National Laboratory, Rice University, Purdue University, Northwestern University, Institut FOTON CNRS UMR 6082 (France) and Argonne National Laboratory has created a number of hybrid perovskite solar cells with a FA0.7MA0.25Cs0.05PBI3 composition and measured them using a variety of techniques including grazing-incidence wide-angle x-ray scattering (GIWAXS) maps at the X-ray Science Division 8-ID-E x-ray beamline of the APS (an Office of Science user facility at Argonne).

casts light on new benefits of perovskite solar cells imageThe experimental setup (top left) and the corresponding light-induced lattice expansion effect, which leads to curing defects and relieving of lattice strain (bottom left) and as a result an increase in the open circuit voltage of a solar cell

In most of the cells, the researchers noted a substantial improvement in PCE from 18.5% to 20.5% under continuous light soaking with a 1-sun (100 mW/cm2) source as the lattice structure of the hybrid cells uniformly expanded. This expansion relieved local strains in the bulk material and better aligned the crystal planes, as evidenced by narrowing and uniform shifting of the Bragg peaks toward lower scattering values as seen by GIWAXS. The researchers explain that constant illumination generates electron-hole pairs in the perovskite material, decreasing the distortions of some bonds while elongating others, resulting in a generalized lattice expansion and relaxation. A similar phenomenon was seen with pure MAPbI3 thin films, suggesting that such lattice expansion under light is common for hybrid perovskite materials.

University of Toledo team reports breakthrough in new material for all perovskite tandem solar cells

Researchers from the University of Toledo have reported progress that may push the performance of tandem perovskite solar cells to new levels. Working in collaboration with the U.S. Department of Energy's National Renewable Energy Lab and the University of Colorado, Dr. Yanfa Yan, UToledo professor of physics, envisions that the new high efficiency tandem perovskite solar cell will be ready to debut in full-sized solar panels in the consumer market in the near future.

"We are producing higher-efficiency, lower-cost solar cells that show great promise to help solve the world energy crisis," Yan said. "The meaningful work will help protect our planet for our children and future generations. We have a problem consuming most of the fossil energies right now, and our collaborative team is focused on refining our innovative way to clean up the mess."

Eindhoven team finds that the addition of fluoride boosts the stability of perovskite solar cells

Researchers at the Eindhoven University of Technology in the Netherlands have found a way to address the issue of stability in perovskite solar cells by adding a small amount of fluoride during the production process, which was found to increase the stability of such cells.

Fluoride stabilizes perovskite solar cells imageFluoride stablizes perovskite solar cells by encouraging the formation of strong hydrogen bonds and ionic bonds on the surface of the perovskite material.

The scientists found the fluoride ions form a protective layer around perovskite crystals, preventing the ill effects of light, heat and moisture. "Our work has improved the stability of perovskite solar cells considerably," said Shuxia Tao, assistant professor at Eindhoven University of Technology's Center for Computational Energy Research. "Our cells maintain 90% of their efficiency after 1,000 hours under extreme light and heat conditions. This is many times as long as traditional perovskite compounds. We achieve an efficiency of 21.3%, which is a very good starting point for further efficiency gains."

UK researchers achieve record PSC stability using waterproof graphite-based coating

Researchers at the University of Bath have applied a waterproof graphite-based coating to a perovskite cell intended to power the production of hydrogen underwater. The cell reportedly worked underwater longer than expected, and may open the door to a cheap and sustainable way of making hydrogen fuel from water using sunlight.

Researchers used graphite film to coat perovskite solar cells and waterproof them image

“The coated cells worked underwater for 30 hours – ten hours longer than the previous record,” the scientists wrote, adding the glue sandwiching the coat to the cells began to fail after 30 hours. They believe stronger glue could help the cell stabilize for longer. “We achieve a record stability of 30h in aqueous electrolyte under constant simulated solar illumination, with currents above 2 mA cm−2 (milliamperes per cm−2) at 1.23 VRHE,” they added.