FSU team uses old materials to tackle stability issues of next-gen perovskite solar cells

A Florida State University research team has addressed perovskite solar cells' stability issue by mixing the old with the new. Professor of Chemistry Biwu Ma and his team published a new study that shows if you add a layer of ancient organic pigment to a perovskite solar cell, it increases the stability and efficiency of the cell.

“Pigments are abundant, low cost and robust,” Ma said. “When we combine them with perovskites, we can generate new high-performance hybrid systems. It’s using the old with the new, and together they produce something really exciting.”

POTECH team designed highly efficient and stable PSC materials using an organic spacer molecular additive

Researchers at POSTECH recently developed an organic spacer molecular additive that can improve both the photoelectric efficiency and stability of perovskites.

The POSTECH team, led by Professor Kilwon Cho and Ph.D. candidate Sungwon Song of the Department of Chemical Engineering, succeeded in fabricating perovskite solar cells that are highly efficient and stable by drastically reducing the concentration of internal defects in the crystals as well as increasing the moisture resistance of perovskite by introducing a new organic spacer molecule additive in the perovskite crystal.

Florida State University team deepens understanding of perovskite degradation mechanisms to improve stability of solar cells

Florida State University (FSU) researchers are working to better understand the fundamental processes in perovskites. As art of this task, they found that small tweaks to the chemical makeup of the materials as well as the magnitude of the electrical field it is exposed to can greatly affect the overall material stability.

Understanding the effect of light and temperature on the optical properties and stability of mixed-ion halide perovskites image

"How can we make perovskites more stable under real-world conditions in which they'll be used?" FSU Assistant Professor of Chemistry and Biochemistry Lea Nienhaus said. "What is causing the degradation? That's what we're trying to understand. Perovskites that don't degrade quickly could be a valuable tool for obtaining more energy from solar cells."

Australian team tackled light-induced segregation issue using high-intensity light

Researchers at Monash University, University of Sydney and University of Melbourne in Australia have addressed a fundamental challenge standing before massive commercialization of perovskite solar cells - light-induced phase segregation, in which illumination, such as sunlight, disrupts the carefully arranged composition of elements within mixed-halide perovskites.

Light-induced segregation often leads to instability in the material’s bandgap, interfering with the wavelengths of light absorbed, while reducing charge-carrier conduction and the efficiency of devices.

EPFL team develops deposition method to overcome formamidinium issues

Metal halide perovskites are often made by mixing cations or halides with formamidinium (FAPbI3), to get high power-conversion efficiency in perovskite solar cells. But at the same time, the most stable phase of FAPbI3 is photoinactive, meaning that it does not react to light—the opposite of what a solar power harvester should do. In addition, solar cells made with FAPbI3 show long-term stability issues. Now, researchers led by Michael Grätzel and Anders Hafgeldt at EPFL, have developed a deposition method that overcomes the formamidinium issues while maintaining the high conversion of perovskite solar cells.

In the new method, the materials are first treated with a vapor of methylammonium thiocyanate (MASCN) or formamidinium thiocyanate FASCN. This innovative tweak turns the photoinactive FAPbI3 perovskite films to the desired photosensitive ones.