Researchers shed light on the origin of perovskite instability

Researchers in the Cava Group at the Princeton University Department of Chemistry have lifted the mystery surrounding the reasons for instability in the inorganic perovskite cesium lead iodide (CsPbI3), known for its potential in creating highly efficient solar cells.

Using single crystal X-ray diffraction performed at Princeton University and X-ray pair distribution function measurements performed at the Brookhaven National Laboratory, the Princeton researchers detected that the source of thermodynamic instability in the halide perovskite cesium lead iodide (CsPbI3) is the inorganic cesium atom and its “rattling” behavior within the crystal structure.

Perovskite solar cells pass strict international tests

Australian scientists have announced what could be an important step towards commercial viability of perovskite solar cells when their solar cells passed strict International Electrotechnical Commission testing standards for heat and humidity.

"Perovskites are a really promising prospect for solar energy systems," said Professor Anita Ho-Baillie, the inaugural John Hooke Chair of Nanoscience at the University of Sydney. "They are a very inexpensive, 500 times thinner than silicon and are therefore flexible and ultra-lightweight. They also have tremendous energy enabling properties and high solar conversion rates." However, unprotected perovskite cells do not have the durability of silicon-based cells, which is one of the reasons they are not yet commercially viable.

Recent advances in the use of plasmonic enhancement to improve performance and stability of perovskite solar cells

Two new studies have been recently released on the topic of advances in the use of plasmonic enhancement to improve performance and stability of perovskite solar cells.

In recent years, plasmonic enhancement has been used in a wide variety of research aimed at improving the efficiency and thermal stability of perovskite solar cells. The technique consists of enhancing the cells’ electromagnetic field through metal nanostructures, which in turn improves the devices’ low optical absorption in the visible spectrum.

Researchers discover that adding a certain molecule to the mix can give perovskites significant stability

A Purdue University-led research team discovered that adding a rigid bulky molecule – bithiophenylethylammonium – to the surface of a perovskite stabilizes the movement of ions, preventing chemical bonds from breaking easily. The researchers also demonstrated that adding this molecule makes a perovskite stable enough to form clean atomic junctions with other perovskites, allowing them to stack and integrate.

“If an engineer wanted to combine the best parts about perovskite A with the best parts about perovskite B, that typically can’t happen because the perovskites would just mix together,” said Brett Savoie, a Purdue assistant professor of chemical engineering. “In this case, you really can get the best of A and B in a single material. That is completely unheard of.”

Iowa State team take steps to ensure stable perovskite solar cells

Iowa State University engineers, in a project partially supported by the National Science Foundation, have found a way to take advantage of perovskite’s useful properties while stabilizing the cells at high temperatures.

Vikram Dalal, an Iowa State University Professor in Engineering and corresponding author of the paper, said there are two key developments in the new solar cell technology: First, he said the engineers made some tweaks to the makeup of the perovskite material. They got rid of the organic components in the material – particularly cations, materials with extra protons and a positive charge – and substituted inorganic materials such as cesium. That made the material stable at higher temperatures.