Technical / research

Researchers develop strategy based on SAMs to design inverted PSC with 24.38% efficiency

Researchers from China's Hangzhou Dianzi University and Jiaxing University have developed a strategy for optimizing the bottom region of perovskite solar cells and designed an inverted perovskite solar cell using the new strategy. The proposed cell was treated with two molecules known as 2-mercaptoimidazole and 2-mercaptobenzimidazole and was based on a hole transport layer relying on a self-assembled monolayer.

“The HTLs prepared with SAM materials not only have negligible parasitic absorption, low material consumption, and stable adhesion but also exhibit inherent passivation of defects on the bottom of perovskites,” the research team explained.

Read the full story Posted: May 25,2024

Researchers use antimony selenide as a bottom cell material for efficient perovskite/Sb2Se3 tandem solar cells

Researchers from the University of Science and Technology of China and Hefei University of Technology have developed a proof-of-concept tandem solar cell tandem solar cell by using antimony selenide (Sb2Se3) for the bottom cell and a wide-bandgap organic-inorganic hybrid perovskite material for the top cell. The device reached a power conversion efficiency of more than 20%, which demonstrates that antimony selenide has a high potential for bottom-cell applications.

Antimony selenide (Sb2Se3) possesses a band gap of 1.05–1.2 eV and has been widely applied in single-junction solar cells. Based on its band gap, Sb2Se3 can also be used as the bottom cell absorber material in tandem solar cells. Sb2Se3-based solar cells also exhibit excellent stability with nontoxic compositional elements. In this recent work, the team demonstrated a perovskite/antimony selenide four-terminal tandem solar cell with a specially designed and fabricated transparent electrode for an optimized spectral response.

Read the full story Posted: May 24,2024

Researchers report cadmium-doped perovskite solar cell with 22.7% efficiency

Researchers from the University of Victoria, University of British Columbia and Henan University recently used a cadmium iodide doping technique to stabilize the blade coating process in the manufacturing of solar cells based on formamidinium lead iodide (FAPbI3) perovskite. The team built a cell showing a considerable increase in efficiency compared to an identical device without cadmium doping.

FAPbI3 is one of the most promising perovskite materials for solar cell applications, as it offers a narrow energy bandgap and remarkable stability. However, there are still challenges to overcome considering the FAPbI3 polymorphism issue and its hypersensitivity to fabrication conditions. The scientists hypothesized that introducing a homovalent Pb-site additive would be beneficial, and one such alternative is cadmium.

Read the full story Posted: May 22,2024

Researchers develop new technique to grow single-crystal perovskite hydrides

Researchers from Japan's Shibaura Institute of Technology and National Institute for Materials Science have developed a method to grow single-crystal perovskite hydrides, enabling accurate hydride conductivity measurements.

Perovskite hydrides, whose molecular structure contains hydrogen anions (H−), attract special attention because of their hydrogen-derived properties and many believe they can be useful for hydrogen storage technologies such as fuel cells and next-generation batteries, as well as energy-saving superconducting cables. However, measuring their intrinsic hydride-ion conductivity is difficult. In their recent study, the researchers addressed this issue using a novel laser deposition technique in an H-radical atmosphere. Using this approach, they grew thin-film single crystals of two different perovskite hydrides and characterized their hydride-ion conductivity. 

Read the full story Posted: May 21,2024

Researchers design efficient 4T perovskite-cadmium tandem solar cells

Researchers at the University of Toledo have designed a four-terminal (4T) tandem solar cell with a top device that uses a perovskite absorber with a tunable wide-bandgap and a bottom cell based on a commercially established narrow-bandgap absorber technology made of cadmium telluride (CdTe).

Perovskite-cadmium telluride tandem solar cells are relatively unexplored compared to other tandems. While the efficiency potential of CdTe-based tandems is lower than CIGS-based tandems due to the higher bandgap of the CdTe bottom cell, the broader commercial success of CdTe solar cells makes them interesting to investigate for thin-film tandem applications.

Read the full story Posted: May 20,2024

Researchers achieve 24.62% efficiency in inverted perovskite solar cells through poly (ionic liquid) bulk modification

Small-molecule ionic liquids are frequently used as efficient bulk phase modifiers for perovskite materials. However, their inherent characteristics, such as high volatility and ion migration, pose challenges in addressing the stability issues associated with perovskite solar cells (PSCs). Recently, researchers at China's Northwestern Polytechnical University and CNPC Tubular Goods Research Institute designed improved poly ionic liquids (ILs) with multiple active sites as efficient additives for perovskite materials.

The team's recent work shows how additive engineering with a polymerized ionic liquid to the metal halide perovskite material can improve the solar cell's function, helping to pave the way for the adoption of perovskite solar cells.

Read the full story Posted: May 19,2024

Researchers use synergetic substrate and additive engineering to achieve over 30%-efficient perovskite-Si tandem solar cells

Researchers from EPFL, CSEM and Empa have demonstrated a cell design combining additive and substrate engineering that yields consistently high power conversion efficiencies and discussed various design aspects that are important for reproducibility and performance. 

The team presented two key developments with a synergetic effect that boost the PCEs of tandem devices with front-side flat Si wafers—the use of 2,3,4,5,6-pentafluorobenzylphosphonic acid (pFBPA) in the perovskite precursor ink that suppresses recombination near the perovskite/C60 interface and the use of SiO2 nanoparticles under the perovskite film that suppress the enhanced number of pinholes and shunts introduced by pFBPA, while also allowing reliable use of Me-4PACz as a hole transport layer. 

Read the full story Posted: May 19,2024

Researchers use DBM additive engineering for efficient and stable carbon-based CsPbI2Br perovskite solar cells

Researchers at China's Shanghai University of Electric Power have used dibenzoylmethane (DBM) as a precursor additive introduced in order to regulate the crystallization of CsPbI2Br perovskite while passivating its associated defects. 

Inorganic CsPbI2Br perovskite solar cells (PSCs) have attracted massive interest but the tendency towards unruly crystallization and poor film quality of inorganic CsPbI2Br perovskites are major factors limiting their performance improvement. In their recent work, the scientists used DBM additive engineering for efficient and stable carbon-based CsPbI2Br PSCs.

Read the full story Posted: May 18,2024

Duke University and Springer Nature collaborate to create a unique source for enhanced selection of perovskite materials

A recent collaboration between the Hybrid³ team at Duke University (led by Professor Volker Blum) and SpringerMaterials has resulted in an insightful project called the Hybrid Perovskite Data Set, which enables researchers to compare and analyze different materials and optimize their properties for specific applications.

The huge number of variations of perovskite materials can make it challenging to find the most suitable material for a specific application. Now, researchers can use the data set to design new materials and experiment with new compositions, making the discovery of new materials more efficient and effective.

Read the full story Posted: May 18,2024

Researchers improve performance of all-inorganic perovskite solar cells through bandgap grading and material design

Researchers from India's Chiktara University have reported improved stability and performance of organic-inorganic perovskite solar cells by applying a strategy called bandgap grading.

The method is based on enabling the cell perovskite absorber to collect a wider range of light photons by modifying its thickness and characteristics. The team explains that its recent study demonstrates the effectiveness of both linear and parabolic bandgap grading strategies in optimizing light absorption and boosting performance, showing its potential. 

Read the full story Posted: May 17,2024