Researchers develop perovskite-based multifunctional logic gates

Researchers at KIST and Gwangju Institute of Science and Technology (GIST), led by Dr. Yusin Pak at the Sensor System Research Center (KIST) and Professor Gun Young Jung at the School of Materials Science and Engineering (GIST), have developed ultra-high-speed, high-efficiency optoelectronic logic gates (OELGs) by using organic-inorganic perovskite photodiodes.

Demand is increasing for computers that can quickly calculate and process large amounts of information, as artificial intelligence, self-driving cars, drones, and metaverse technologies are drawing attention as core industries of the future. However, electronic semiconductor logic gates, which serve as the brains of computers, have limited capacity in high-speed data calculation and processing, and have disadvantages in that they consume a lot of energy and generate considerable heat.

Researchers create high-performance inorganic metal halide perovskite transistors

A team of researchers from Pohang University of Science and Technology, University of Electronic Science and Technology of China and Sungkyunkwan University has improved the performance of a p-type semiconductor transistor, using inorganic metal halide perovskite.

One of the biggest advantages of the new technology is that it enables solution-processed perovskite transistors to be simply printed as semiconductor-like circuits.

Researchers synthesize a previously theoretical nitride perovskite

Scientists at the National Renewable Energy Laboratory (NREL) have experimentally synthesized a nitride perovskite material that previously only existed in theory and measured its properties in collaboration with researchers at the Colorado School of Mines.

Synthesis of LaWN3 nitride perovskite with polar symmetry image

The new material could theoretically be used for microelectromechanical devices such as the ones used in telecommunications and other areas. Nitride perovskites have been computationally predicted to be stable, but not many have been synthesized, and their experimental properties remain largely unknown, the researchers explained in their new article.

Researchers develop a thin and flexible perovskite-based scanner for fingerprints

Researchers from TNO at Holst Centre, Solliance and TU/e have jointly developed a thin and flexible perovskite-based scanner for fingerprints.

A thin and flexible scanner for fingerprints and documents based on metal halide perovskites image

Low-resolution image-sensor arrays have been demonstrated in the past, but the high-resolution, high pixel-count image sensors suitable for commercial applications have not yet been truly achieved. The thin and flexible scanner in this new work is based on metal-halide perovskites (MHPs). Gerwin Gelinck, Chief Technology Officer TNO at Holst Centre, elaborates on the new study: “Perovskites are marvelous materials! For the first time we show that these materials are also very good for light imaging and sensing applications. When combined with display-like transistors, we made a scanner that can capture high-resolution color images as well as biometric fingerprinting”.

Correlated electrons ‘tango’ in a perovskite oxide at the extreme quantum limit

A team of researchers from Oak Ridge National Laboratory, Florida State University, Argonne National Laboratory, University of Pittsburgh, Pittsburgh Quantum Institute and Sungkyunkwan University has found a rare quantum material in which electrons move in coordinated ways, essentially “dancing.”

Straining the material creates an electronic band structure that sets the stage for exotic, more tightly correlated behavior – similar to tangoing – among Dirac electrons, which are especially mobile electric charge carriers that may someday enable faster transistors.