DoE funded project will use PSCs to produce green hydrogen

A Department of Energy (DoE) project, lead by University of Michigan's Prof. Zetian Mi, is using perovskites to develop high efficiency, low cost, and ultrastable production of green hydrogen fuels directly from sunlight and water.

The new method to achieve clean hydrogen through solar water splitting offers a promising path to achieving net-zero carbon emissions. The University of Michigan research team aims to stabilize perovskite-based solar cells to produce highly-efficient, low-cost, ultrastable green hydrogen fuel.

Read the full story Posted: Jun 01,2023

New strategy based on bis-diazirine (BD) molecules enables stable and efficient perovskite solar cells

Researchers from China's Fudan University, Central South University, East China Normal University, Chinese Academy of Sciences and Suzhou University of Science and Technology, along with Canada's University of Victoria and Austria's University of Vienna, have proposed a novel strategy to achieve efficient and stable perovskite solar cells (PSCs) through introducing bis-diazirine molecules to immobilize the organic cations by covalent bonds.

The resulting PSCs exhibited a high certified efficiency of over 24% with long operational stability of over 1,000 hours. The scientists believe that this strategy also possesses great potential in other perovskite-based optoelectronic devices. 

Read the full story Posted: May 31,2023

Canon develops perovskite quantum-dot inks for use in next-gen displays

Canon has announced that it has developed perovskite quantum-dot inks for use in next-generation displays, with improved durability and potential for application in high-image-quality displays.

Quantum dots are semiconductor nanocrystals that measure only a few nanometers in diameter and can emit light with high brightness and high color purity. Displays with quantum-dot technology are attracting growing attention due to their wide color gamut that makes possible high visual expressiveness. Therefore, quantum dots for display is sought to achieve higher color purity and higher light utilization efficiency. In addition, though cadmium (Cd) has thus far been the preferred material for quantum dots, due to environmental concerns, there is a growing interest in Cd-free materials.

Read the full story Posted: May 31,2023

CATL is reportedly looking into the development of perovskite cells

Contemporary Amperex Technology Co., Limited (CATL), a world-leading developer of EV batteries, is spearheading a new initiative to develop solar cells.

According to reports, CATL is researching the development of perovskite cells, among the most promising methods to drive new improvements in solar panel performance. It also recently struck an agreement with JA Solar Technology Co., China’s fourth-biggest module maker, to cooperate on scientific innovations, marketing and storage.

Read the full story Posted: May 28,2023

Researchers use lead-chelating hole-transport layers for efficient and stable perovskite minimodules

Researchers from the University of North Carolina at Chapel Hill, University of Toledo and Perotech Energy have found that bathocuproine, which is often used as an electron-transport material, can improve power-conversion efficiency and stability when added to the hole-transport layer. 

The chelation product of bathocuproine with lead ions is insoluble in the perovskite ink and also decreases the formation of amorphous regions by reducing the amount of trapped dimethyl sulfoxide solvent. Minimodules with an aperture area of 26.9 square centimeters had a certified efficiency of 21.8% and light-soaking stability exceeding 2000 hours. 

Read the full story Posted: May 27,2023

NASA claims perovskite solar cells tested in space degrade less than devices tested on Earth

US space agency NASA has revealed the results of an experiment it conducted to assess the performance and durability of perovskite solar cells on the International Space Station. The surprising discovery was that perovskite solar cells tested in space exhibit less degradation than reference devices tested on Earth. The specific factors in the space environment that contributed to the superior performance of the perovskite absorber film currently remain unknown.

NASA tested a perovskite absorber over a 10-month period in order to assess its resistance to vacuum, extreme temperatures, radiation, and light stressors simultaneously.

Read the full story Posted: May 25,2023

Researchers develop inverted flexible perovskite solar cells via solution phase deposition of yttrium-doped SnO2 directly on perovskite

Researchers from the University of Louisville and National Renewable Energy Laboratory (NREL) have reported high-performance, inverted f-PSCs from the direct deposition of yttrium-doped SnO2 nanoparticles functionalized with acetate on top of perovskite as an ink in anhydrous ethanol via blade coating. 

Yttrium doping reportedly improved device performance by improving the charge extraction with a decreased series resistance leading to improvements in the open-circuit voltage and fill factor. 

Read the full story Posted: May 25,2023

Oxford PV announces new efficiency record

Oxford PV has announced 'a new world record for the efficiency of a commercial-sized solar cell'. The efficiency record was achieved on a commercial-sized ‘M4’ (258.15 cm2) solar cell. The cell is a 2T device made by depositing a perovskite thin-film cell onto a conventional silicon heterojunction cell.

The record-breaking solar cell converted 28.6% of the sun’s energy into electricity, as independently certified by Fraunhofer ISE. The solar cell was produced at Oxford PV’s integrated production line in Brandenburg an der Havel, Germany. The factory has commenced initial production of the company’s tandem solar cells for integration by solar module manufacturing partners and is ramping up to higher volumes. The site, operational since 2017, houses the world’s first volume manufacturing line for perovskite-on-silicon tandem solar cells.

Read the full story Posted: May 24,2023

Researchers introduce a fullerene-derivative interlayer for improved solar efficiency

Researchers from the University of Science and Technology of China and Dongguan University of Technology have found a way to improve perovskite solar cells by adding a layer that improves stability and efficiency at capturing power from sunlight.

All-inorganic perovskite solar cells are more stable at high temperatures, which is important for their long-term performance. However, they are not as efficient at converting sunlight into electricity compared to solar cells made with a mix of organic and inorganic materials. The team explored the use of an additional layer to fix the issues found in all-inorganic perovskite solar cells. In these solar cells, the layers of the perovskite material tend to encounter problems with their structure, energy levels, and electron traps. These issues reduce the movement of electrons and overall efficiency of the solar cell. To address these problems, the scientists introduced an extra layer called bis-dimethylamino-functionalized fullerene derivative (PCBDMAM) between the perovskite layer and the layer that helps with electron transport. This interlayer improves the movement of electrons and increases the solar cell's efficiency, while also enhancing its stability at different temperatures.

Read the full story Posted: May 23,2023