Researchers minimize the deformation of the microstructure of photoactive layers to achieve highly efficient solar cells

Researchers from South Korea’s Ulsan National Institute of Science and Technology (UNIST) have reported a conversion efficiency of 25.17% in a perovskite solar cell, achieved by minimizing the deformation for the microstructure of photoactive layers in the device.

The inner structure of the newly-developed photoactive layer, as well as the working principle of the perovskite cell imageThe inner structure of the newly-developed photoactive layer, as well as the working principle of the perovskite cell. Image: Unist

The team explained that the microstructure of these layers, which generate an electric charge and send it to electrodes, can be deformed - which affects the efficiency of the charge transfer itself. “This is because the extracted electric charges disappear when defects are formed,” they explained.

EMC discloses plans for roll-to-roll printing of perovskite PV on glass

Energy Materials Corporation (EMC) has stated its plans for roll-to-roll printing of perovskite PV on glass.

The plan is backed by two partnerships—one with the Eastman Kodak Company for roll-to-roll printing and another with glass and ceramics company Corning, for flexible glass. EMC’s funding includes a $4 million research grant from the Solar Energy Technologies Office of the U.S. Department of Energy.

Researchers develop a method to prepare phase-pure quasi two-dimensional (2D) metal-halide perovskites

The University of Macau (UM) Institute of Applied Physics and Materials Engineering (IAPME) and Nanjing Tech University jointly developed a method to prepare phase-pure quasi two-dimensional (2D) metal-halide perovskites, which could be used for constructing stable perovskite solar cells.

Thanks to their excellent optoelectronic properties and low production cost, metal-halide perovskites have been considered as the most innovative material in light harvesting and light emission. However, the very low formation energy of the typically used three-dimensional (3D) perovskites accounts for their low stability and seriously hinders the commercialization of perovskite optoelectronic devices. Recent studies show that the dimensionality of deposited perovskites could be reduced from 3D to quasi 2D by introducing an appropriate amount of long organic cations into the precursor solution, which can greatly improve the stability of perovskites thanks to the protection offered by the organic cation layer on the surface. Nevertheless, such 2D perovskites typically consist of multiple quantum wells with a random well width distribution because of the thermodynamic stability of compounds in the solution. The thick quantum wells and 3D perovskite within the deposited film will still limit the overall stability of the material. Therefore, the deposition of phase-pure quasi 2D perovskite remains a key scientific challenge.

SETO 2020 funds 2 perovskite-related projects

The U.S government's Solar Energy Technologies Office (SETO) Fiscal Year 2020 funding program has been released, supporting projects that will improve the affordability, reliability, and value of solar technologies on the U.S. grid and tackle emerging challenges in the solar industry.

This program funds projects that advance early-stage photovoltaic (PV), concentrating solar-thermal power (CSP), and systems integration technologies, and reduce the non-hardware costs associated with installing solar energy systems. Two perovskite-related projects have been included in this program.

Perovskite PV startup Evolar secures investment to target rapid commercialization

Evolar logo imageSweden-based perovskite-based PV start-up Evolar has announced an investment from Norwegian renewables investor Magnora as it targets rapid commercialization of its technology.

Evolar has been researching the development of perovskites in solar cells, and Evolar now intends to help commercialize the technology. Evolar’s approach is to add a perovskite-based thin-film layer to cells to create a tandem solar cell, which the company said is expected to increase module efficiency by five percentage points.

KRICT team demonstrates 'roll-to-roll' manufacturing of flexible perovskite solar cells

Researchers at South Korea's KRICT, led by Seo Jang-won, have demonstrated pilot-scale "roll-to-roll" (R2R) manufacturing of flexible and light perovskite solar cells.

As an eco-friendly antisolvent, Seo's team introduced tert-butyl alcohol (tBuOH), a colorless solid, which melts near room temperature and has a camphor-like odor, for R2R processing through cooperation with VTT Technical Research Centre of Finland.

Perovskite-based photodiode could open the door to next-gen sensors that detect circularly polarized light without filters

Under the Japan Science and Technology Agency (JST) Strategic Basic Research Programs, researcher Ayumi Ishii (Toin University of Yokohama, specially appointed lecturer) has developed a photodiode using a crystalline film composed of lead perovskite compounds with organic chiral molecules to detect circularly polarized light without a filter.

A technology to detect "polarization," or oscillation direction of light, can visualize object surfaces with damages, foreign objects, and distortions. Furthermore, detection of "circularly polarized light," or rotating electric field of light makes it possible for us to identify stress intensity and distribution of objects. Conventional photodiodes for camera or sensor applications cannot detect polarization of light directly, and therefore, various types of filters must be attached on top of the device to separate the information of polarization spatially. These structures cause substantial losses of sensitivity and resolution in the light detection, especially detection of circularly polarized light is heretofore considered difficult. Thus, it has been much sought-after to develop a new sensor for detection of circularly polarized light without any filters.