Light controlled current transport by charged atoms demonstrated in perovskites

Researchers at the Max Planck Institute for Solid State Research have found that in a certain perovskite, light not only releases electrons, but also electrically charges atoms. This novel photoeffect is said to be extremely large - ion conductivity increased by a factor of one hundred. For solar cells made from this material, the high light-induced ion conductivity is rather damaging but the consequences can be counteracted. The researchers find the effect ground-breaking in itself, as it makes novel, light-controlled electrochemical applications conceivable, such as batteries directly charged by light.

Light-controlled current transport by charged atoms demonstrated for the first time image

The research team has examined how light influences the transport of electricity in materials based on the perovskite methylammonium lead iodide (MAPI). In their experiments, the researchers observed that ions, or charged atoms, contribute to conductivity to an unexpectedly high degree when the material is illuminated. Light that influences ion transport has previously been demonstrated in biology: Illumination is able to indirectly alter the permeability of a cell membrane. "Very surprising, however, is the fact that the ionic conduction of crystalline solids can be directly modified and to what extent this is possible," says the research team.

Project ESPResSo will receive EU funding to bring PSCs out of the lab and into the market

Imec, the leading research hub focused on nanoelectronics, energy and digital technologies and partner in EnergyVille, has been named the coordinator of an ambitious 3-year European Union (EU) funded project called "ESPResSo" (Efficient Structures and Processes for Reliable Perovskite Solar Modules), that gathers known leaders in the field of perovskite PV technology to revolutionize Europe's photovoltaics (PV) industry.

Projject ESPResSo for perovskite solar cells image

The ESPResSo consortium has been granted over 5 Million by the European Union to overcome the limitations of today's state-of-the-art perovskite PV technology, bring perovskite solar cells to the next maturity level, and demonstrate their practical application.

SERIS, NTU and NRF to collaborate on 30% efficiency tandem solar cell development

The Solar Energy Research Institute of Singapore (SERIS) at the National University of Singapore (NUS) has announced a new R&D goal to develop a commercially viable thin-film-on-silicon tandem solar cell with 30% conversion efficiencies.

SERIS researchers will collaborate with Nanyang Technological University (NTU) and Campus for Research Excellence and Technological Enterprise (CREATE) of NRF on both III-V and perovskite materials, while SERIS will develop optimized silicon bottom cells.

Aalto team develops improved aging tests for perovskite-based solar cells

Researchers at Aalto University in Finland have designed a new, simplified method for testing solar cells based on perovskite and dye sensitized technologies for degradation. This presumably follows Aalto's findings from February 2018 regarding deficiencies in current aging tests performed on perovskite-based solar cells.

Aalto team suggests new perovskite solar cells aging tests image

The researchers explain that their fast, low threshold photography method could detect even slight disintegration in a perovskite structure, with more reliable results than optical measurement devices, and lower complexity and labor requirements than more commonly used x-ray crystallography.

A novel composite perovskite thin film enables high efficiency solar cells

A joint team of researchers led by Professor Federico Rosei at the Institut national de la recherche scientifique (INRS), and Dr. Riad Nechache from École de technologie supérieure (ÉTS), both located in Montreal, Canada, have developed a composite perovskite thin film made of two different inorganic oxide materials that significantly improves the performance of solar cells.

The team demonstrated a cell in which the open-circuit voltage and short-circuit photocurrent are tunable by varying the electrical resistance of the device, which in turn is controlled by externally applying voltage pulses. This provides an alternative way of achieving highly stable, high-efficiency conversion.

Researchers find a new pathway toward high performance perovskite LEDs

A team of researchers led by Professor Biwu Ma from Florida State University demonstrated a new approach to building efficient and spectrally stable red perovskite LEDs. The team developed a simple solution processing method followed by thermal annealing to prepare highly luminescent ultra-smooth polymer–perovskite composite thin films with tunable emissions from red to deep-red.

Florida U team advanced red perovskite LEDs image

Light emitting diodes (LEDs) incorporating inorganic, organic, or nanoscale materials are highly promising for solid-state lighting and displays. Despite the significant progress achieved in green emitting perovskite LEDs in recent years, blue or red emitting LEDs still remain a challenge with regards to their performance and spectral stability during operation.

Greatcell Solar awarded €500,000 in EU Horizon 2020 project

Greatcell logo imageGreatcell Solar has been awarded €500,000 in a European Union Horizon 2020 project known as H2020-SGA-FET-GRAPHENE. The grant to Greatcell's application has occurred through its 100% Italian subsidiary, Greatcell Solar Italy, located in Rome.

The H2020 project is for the innovative development and the installation of a Perovskite Solar Cell (PSC) 10m2 array in the Greek island of Crete and aligns closely with Greatcell's existing technology development plan. Much of the work involved will investigate advanced technology for higher efficiencies, longer life and improved encapsulation of PSC enabled glass substrates, investigating in particular the usage of Graphene in PSC solar cells.