New "demonstrator project" at EPFL-Sion Campus will test perovskite solar tech in real life conditions

The EPFL launched a new project, supported by the Valais State Government with 5 million Swiss Francs, to realize a "demonstrator project" at EPFL-Sion Campus Energypolis.

Sized at the canton or district level, these installations will enable the testing of technologies developed in the laboratories of EPFL Valais-Wallis in real conditions, with the collaboration of local partners and the HES-SO Valais-Wallis.

FSU team uses old materials to tackle stability issues of next-gen perovskite solar cells

A Florida State University research team has addressed perovskite solar cells' stability issue by mixing the old with the new. Professor of Chemistry Biwu Ma and his team published a new study that shows if you add a layer of ancient organic pigment to a perovskite solar cell, it increases the stability and efficiency of the cell.

“Pigments are abundant, low cost and robust,” Ma said. “When we combine them with perovskites, we can generate new high-performance hybrid systems. It’s using the old with the new, and together they produce something really exciting.”

POTECH team designed highly efficient and stable PSC materials using an organic spacer molecular additive

Researchers at POSTECH recently developed an organic spacer molecular additive that can improve both the photoelectric efficiency and stability of perovskites.

The POSTECH team, led by Professor Kilwon Cho and Ph.D. candidate Sungwon Song of the Department of Chemical Engineering, succeeded in fabricating perovskite solar cells that are highly efficient and stable by drastically reducing the concentration of internal defects in the crystals as well as increasing the moisture resistance of perovskite by introducing a new organic spacer molecule additive in the perovskite crystal.

Stanford team designs ultrafast way to manufacture perovskite solar modules

A research team at Stanford University has designed a new perovskite manufacturing process. In their work, the team demonstrated an ultrafast way to produce stable perovskite cells and assemble them into solar modules that could power devices, buildings and even the electricity grid.

“This work provides a new milestone for perovskite manufacturing,” said study senior author Reinhold Dauskardt, the Ruth G. and William K. Bowes Professor in the Stanford School of Engineering. “It resolves some of the most formidable barriers to module-scale manufacturing that the community has been dealing with for years.”

Researchers gain a better understanding of the role of organic cation conformation in optimizing the optoelectronic properties of 2D OIHPs

Organic-inorganic hybrid perovskites (OIHPs) have great potential for various applications like solar cells, lighting-emitting diodes (LEDs), field effect transistors (FETs) and photodetectors. Among their most important parameters influencing the power conversion efficiency (PCE) of devices based on perovskite materials is their carrier mobility. However, despite massive progress made by introducing new components into the structure to control the mobility of the carriers, the understanding on the atom level of how the components affect the performance is still lacking.

To address this problem, a research team led by Prof. Luo Yi and Prof. Ye Shuji from the University of Science and Technology of China (USTC) of the Chinese Academy of Sciences (CAS) has synthesized a series of 2D OHIPs films with large organic spacer cations.