Researchers use a 2D perovskite passivation layer as an electron blocking layer in 18.5%-efficient carbon-electrode perovskite solar cell

Researchers from Fraunhofer Institute for Solar Energy Systems ISE, EPFL, Korea Basic Science Institute (KBSI) and Morocco's Abdelmalek Essaadi University have developed a perovskite solar cell with a carbon electrode that achieved 18.5% efficiency.

Electron blocking for 18.5%-efficient carbon-electrode perovskite solar cell imageSchematic diagram of the investigated low-temperature carbon electrode-based PSC with 3D/2D perovskite treated by OAI. Image from study

The solar cell also reportedly retained 82% of their efficiency after 500 hours of continuous illumination. The cell is produced via all low-temperature processes that could likely be scaled into low-cost, large-scale manufacturing – making the approach attractive despite achieving lower efficiency than record-setting cells.

EPFL team develops tandem solar cells with 29.2% efficiency

EPFL scientists in Neuchâtel have reported a tandem solar cell that can deliver a certified efficiency of 29.2%. This achievement was made possible by combining a perovskite solar cell with a textured silicon solar cell.

One obstacle the team encountered was finding a way to evenly coat the silicon surface—which is intentionally rough, or textured—with a thin film of halide perovskites. A textured surface is used in order to minimize light reflection. This kind of system can already be found in all commercially available crystalline silicon cells.

Plasmonic Au nanorods enable semitransparent perovskite solar cells with over 13% efficiency

Researchers from the Singapore-HUJ Alliance for Research and Enterprise (SHARE) and Nanyang Technological University have developed semi-transparent perovskite solar cells with over 13% efficiency and 27% transparency using plasmonic Au nanorods.

Semitransparent Perovskite Solar Cells with > 13% Efficiency and 27% Transparency Using Plasmonic Au Nanorods image

Semitransparent hybrid perovskites can open the door to applications in smart windows and building-integrated photovoltaics (BIPV). One route towards semitransparency is thinning the perovskite film, which has several benefits like cost efficiency and reduction of lead. However, this tends to result in reduced light absorbance. To compromise this loss, it is possible to incorporate plasmonic metal nanostructures, which can trap incident light and locally amplify the electromagnetic field around the resonance peaks.

Researchers use swelling-induced crack propagation method to make perovskite microcells for colored solar windows

Researchers from South Korea's Institute for Basic Science (IBS), Gwangju Institute of Science and Technology and Korea University have developed perovskite micro cells with a power conversion efficiency of 20.1% that can be used in colored solar windows.

Korean team makes perovskite microcells for solar windows imagethe colored solar window with the metal–insulator–metal (MIM) resonant structure. The inset shows a cross-sectional view of the perovskite microcell in the colored solar window. Image from Nature Communications

The devices were built using a lift-off-based patterning approach based on swelling-induced crack propagation.

Perovskite-organic tandem solar cells with indium oxide interconnects display impressive efficiency

A group of scientists from the University of Wuppertal, the University of Tübingen, the University of Potsdam, HZB, Max Planck Institute and the University of Cologne in Germany recently developed a perovskite-organic tandem solar cell with optimized charge extraction, a high open-circuit voltage and a thickness of just 1 µm.

The tandem configuration includes a narrow-bandgap organic subcell with a p-i-n-type architecture based on the polymer PM6 and molybdenum oxide (MoOx) as the hole extraction layer (HEL). The cell has a power conversion efficiency of 17.5%, an open-circuit voltage of 0.87 V, a short-circuit current of 26.7 mA cm−², and a fill factor of 75%. The wide-bandgap perovskite subcell was built with a perovskite known as FA0.8Cs0.2Pb(I0.5Br0.5)3, with an efficiency of 16.8%, an open-circuit voltage of 1.34 V, a short-circuit current of 15.6 mA cm−², and a fill factor of 81%.