NREL team boost PSC efficiency using a new chemical formula

Researchers at the National Renewable Energy Laboratory (NREL) report the creation of an efficient tandem perovskite solar cell, using a new chemical formula which also improved the structural and optoelectronic properties of the solar cell.

Most of the research efforts in the field of PSCs have focused on lead-based perovskites, which have a wide bandgap. High efficiency, low bandgap perovskites would enable the fabrication of very high efficiency all-perovskite tandem solar cells where each layer absorbs only a part of the solar spectrum and is optimally configured to convert this light into electrical energy. However, low bandgap perovskites have long suffered from large energy losses and instability limiting their use in tandems.

Researchers develop novel flexible perovskite solar cells for potential use in wearables

A joint research team including scientists from the Chinese Academy of Scinces (CAS), Shijiazhuang Tiedao University in China and Chiao Tung University in Taiwan has developed a novel type of highly flexible and stable perovskite-based solar cell that could be used in wearable electronics.

The team stated that current PSCs are mainly made of a polymer substrate, which has been proven fragile, unstable and not adequately waterproof. The team built a new type of PSC based on an inorganic mica substrate, which could reduce the strain in the device even under large bending deformation. Mica is a mineral that separates easily into small flat transparent pieces of rock.

Linköping researchers develop record efficiency perovskite NIR LED

Researchers at Linköping University have developed efficient perovskite near-infrared (NIR) light-emitting diodes. The external quantum efficiency is a record 21.6%. The work was led by Linköping scientist Feng Gao, in close collaboration with colleagues in China, Italy, Singapore and Switzerland.

Linköping researchers develop record efficiency perovskite NIR LED image

The external quantum efficiency (the ratio of charge carriers emitted as light over all of those fed into the materials) of light-emitting diodes based on perovskites has until now been limited by defects that arise in the material during manufacture. The defects act as traps for the charge carriers and thus cause energy losses.

Netherlands’ ECN reaches 30.2% efficiency for bifacial tandem cell based on perovskite

Researchers at the Energy Research Center of the Netherlands (ECN) have developed a bifacial tandem solar cell with a conversion efficiency of 30.2%. The new cell device – created with Dutch consortium Solliance – was made by applying a newly developed perovskite cell on top of an industrial bifacial crystalline silicon version.

Netherlands’ ECN reaches 30.2% efficiency for bifacial tandem cell based on perovskite

This approach, according to the scientists, enables a significantly higher power conversion efficiency as one cell is optimized for high energy photons, and the other low energy particles. “The tandem device proposed here uses a four-terminal configuration, thus having separate circuits for the top and bottom cells that allow for dynamic fine tuning and optimization of the energy yield,” the creators of the cell wrote. The cell is also said to be better able to capture light on its front and rear sides by responding to the variability of incident light through its electronic design.

Titanium oxide pushes perovskite solar cell efficiency to 16.8%

Researchers at the Japanese Kanazawa University aim to improve the performance of perovskite solar cells by using two kinds of titanium oxide - anatase and brookite.

Titanium oxide helps perovskite solar cell reach 16.8% efficiency image

The team claims to have reached a conversion efficiency of 16.82% in a perovskite cell by applying a brookite layer made of water-solute brookite nanoparticles on an anatase layer. This reportedly helps to improve the transport of electrons from the center of the cell to its electrodes, while also preventing charges from recombining at the border between the perovskite material and the electron transport layer. “Together, both these effects allow us to achieve higher solar cell efficiencies,” said the research coordinator, Md. Shahiduzzaman.