Oxford PV hits 28% efficiency with its tandem silicon-perovskite solar cells

Oxford PV, a leading developer of perovskite solar cells, has announced a new, certified, 28% efficiency world record for its perovskite-based solar cell.

Oxford PV hits new efficiency record image

Oxford PV’s 1 cm2 perovskite-silicon tandem solar cell has achieved a 28% conversion efficiency, certified by the National Renewable Energy Laboratory. The achievement trumps Oxford PV’s previous certified record of 27.3% efficiency for its perovskite-silicon solar cell, announced earlier this year.

ANU team eliminates the interlayer in tandem solar cells

Researchers from the Australian National University (ANU), in collaboration with researchers from and the California Institute of Technology, have developed a way to combine silicon with perovskites to achieve higher efficiencies and lower production costs. They believe that this could lead to cheaper and more efficient solar technology.

The new way to create crystalline silicon and perovskite tandem PV cells is claimed by the team to be the simplest method of doing so.

ASU researchers reach 25.4% efficiency of tandem perovskite/silicon solar cells

Researchers from Arizona State University have achieved 25.4% efficiency in their tandem solar cell stacked with perovskite and silicon. This follows, and surpasses, last year's achievement of 23.6% efficiency.

ASU researchers reach 25.4% efficiency of tandem perovskite/silicon solar cells image

The team's improvement upon the record by nearly two percentage points was reached in a joint project with researchers at the University of Nebraska–Lincoln, predicting they’ll be nearing 30% tandem efficiency within two years.

HZB researchers achieve improved efficiency for monolithic perovskite/silicon tandem solar cells using textured foil

Researchers at Helmholtz-Zentrum Berlin (HZB) have demonstrated 25.5% efficiency for monolithic perovskite/silicon tandem solar cells using textured foil. In addition, the impact of texture position on performance and energy yield is simulated in their new work.

HZB researchers achieve improved efficiency for monolithic perovskite/silicon tandem solar cells using textured foil imageTandem solar cell device schematics of the experimentally realized architecture and SEM cross section image of the top cell

The research team used a textured light management (LM) foil on the front-side of a tandem solar cell processed on a wafer with planar front-side and textured back-side. Consequently, the PCE of monolithic, 2-terminal perovskite/silicon-heterojunction tandem solar cells was improved from 23.4% to 25.5%. This approach replaced the use of textured silicon wafers, that can be utilized for light management but are typically not compatible with perovskite solution processing.

Korver Corp. to develop high-efficiency Perovskite Silicon Tandem (PST) solar cells

Korver Corp. logo imageKorver Corp., an emerging solar and renewable energy company, has provided an update regarding the Company's new strategic direction in the solar energy sector. Korver has now decided to focus on its mission to develop high-efficiency commercially-manufactured Perovskite Silicon Tandem (PST) solar cells.

Mark Brown, President and CEO of Korver Corp., stated, "Our prior research has resulted in the development of highly efficient Perovskite Silicon Tandem solar cells. We plan to reach an efficiency mark of over 30% on a commercial scale by combining perovskite solar with the best silicon technologies on the market today and our own proprietary innovations. Currently, we are working towards scalability and commercial manufacturing of our PST solar cells that could change the way the world produces and consumes energy on a grand scale. We are excited to take the first mover advantage with the next big thing in solar energy."