Printed coatings enable more efficient solar cells

Researchers at Cambridge’s Department of Materials Science and Metallurgy, working with Imperial College London and the Solar Energy Research Institute of Singapore, have developed a method to print ultrathin coatings on perovskite-based solar cells, allowing them to work in tandem with silicon solar cells to boost efficiencies.

New method to print ultrathin coatings to improve PSCs image

Solar cells work by absorbing sunlight to produce clean electricity. But photovoltaics can absorb only a fraction of the solar spectrum, which limits their efficiencies. The typical efficiency of a solar panel is only 18-20%.

New manufacturing process could lead to 30% efficiency tandem devices

Researchers at Arizona State University have demonstrated a perovskite-silicon tandem cell they claim has low reflectance losses and strong potential for commercial production. The ASU team says that this new cell could lead to 30% efficiency tandem devices. The tandem architecture involves a manufacturing process featuring the solution-based blading of perovskites onto textured silicon wafers.

New manufacturing technique for 26%-efficient tandem perovskite solar cell imageImage credit: Joule

The device is manufactured in a nitrogen-assisted blading process which ensures deposition of the perovskite layer onto textured silicon is achieved with typical pyramid heights of 1μm. The manufacture of such tandem devices typically results in perovskite heights of 3-10μm.

New CIGS/perovskite tandem solar cell reaches 24.16% efficiency and awarded a new branch on the NREL chart

Researchers from Helmhotlz-Zentrum Berlin (HZB), collaborating with teams from University of Cambridge, Eindhoven University of Technology, Nicolaus Copernicus University, Salerno University and others, have developed a monolithic "two-terminal" tandem cell made of CIGS and perovskite that achieved a certified efficiency of 24.16%, with a thickness of well below 5 micrometers - which would allow the production of flexible solar modules.

The CIGS-Pero tandem cell by HZB image

Tandem cells combine two different semiconductors that convert different parts of the light spectrum into electrical energy. Metal-halide perovskite compounds mainly use the visible parts of the spectrum, while CIGS semiconductors convert rather the infrared light. CIGS cells, which consist of copper, indium, gallium and selenium, can be deposited as thin-films with a total thickness of only 3 to 4 micrometers; the perovskite layers are even much thinner at 0.5 micrometers.

ANU reaches 27.7% efficiency with silicon/perovskite tandem solar cell

Researchers at The Australian National University (ANU) have announced an impressive achievement - a silicon/perovskite tandem solar cell with a conversion efficiency of 27.7%.

Professor Kylie Catchpole says this would only need to improve slightly - to around 30% - before the technology could be rolled out around the world. "In comparison, typical solar panels being installed on rooftops at the moment have an efficiency around 20%" Professor Catchpole said.

International consortium announces 25% efficiency for perovskite CIGS solar cell

Scientists from Hasselt University, imec, VITO, EnergyVille and international partners within the PERCISTAND consortium have announced that they achieved an energy efficiency of 25% with a thin-film solar cell.

Bart Vermang, coordinator within the PERCISTAND consortium, describes the development of thin-film solar cells as ‘Pioneering’. The consortium, which partly consists of the collaborations within EnergyVille and Solliance, has succeeded in achieving a record energy efficiency with thin film solar cells. ‘We’ve achieved an energy efficiency of 25 percent for the first time, which is just as much energy as a traditional solar cell can generate on a day-to-day basis. And we haven’t yet reached the upper limit of our thin-film solar cells.’