Perovskite Solar

What are perovskite?

Perovskites are a class of materials that share a similar structure, which display a myriad of exciting properties like superconductivity, magnetoresistance and more. These easily synthesized materials are considered the future of solar cells, as their distinctive structure makes them perfect for enabling low-cost, efficient photovoltaics. They are also predicted to play a role in next-gen electric vehicle batteries, sensors, lasers and much more.

Perovskite-image

How does the PV market look today?

In general, Photovoltaic (PV) technologies can be viewed as divided into two main categories: wafer-based PV (also called 1st generation PVs) and thin-film cell PVs. Traditional crystalline silicon (c-Si) cells (both single crystalline silicon and multi-crystalline silicon) and gallium arsenide (GaAs) cells belong to the wafer-based PVs, with c-Si cells dominating the current PV market (about 90% market share) and GaAs exhibiting the highest efficiency.

Perovskite-solar-cell

Thin-film cells normally absorb light more efficiently than silicon, allowing the use of extremely thin films. Cadmium telluride (CdTe) technology has been successfully commercialized, with more than 20% cell efficiency and 17.5% module efficiency record and such cells currently hold about 5% of the total market. Other commercial thin-film technologies include hydrogenated amorphous silicon (a-Si:H) and copper indium gallium (di)selenide (CIGS) cells, taking approximately 2% market share each today. Copper zinc tin sulphide technology has been under R&D for years and will probably require some time until actual commercialization.

What is a perovskite solar cell?

An emerging thin-film PV class is being formed, also called 3rd generation PVs, which refers to PVs using technologies that have the potential to overcome current efficiency and performance limits or are based on novel materials. This 3rd generation of PVs includes DSSC, organic photovoltaic (OPV), quantum dot (QD) PV and perovskite PV.

A perovskite solar cell is a type of solar cell which includes a perovskite structured compound, most commonly a hybrid organic-inorganic lead or tin halide-based material, as the light-harvesting active layer. Perovskite materials such as methylammonium lead halides are cheap to produce and relatively simple to manufacture. Perovskites possess intrinsic properties like broad absorption spectrum, fast charge separation, long transport distance of electrons and holes, long carrier separation lifetime, and more, that make them very promising materials for solid-state solar cells.

Perovskite-solar-cell

Perovskite solar cells are, without a doubt, the rising star in the field of photovoltaics. They are causing excitement within the solar power industry with their ability to absorb light across almost all visible wavelengths, exceptional power conversion efficiencies already exceeding 20% in the lab, and relative ease of fabrication. Perovskite solar cells still face several challenge, but much work is put into facing them and some companies, are already talking about commercializing them in the near future.

What are the advantages of Perovskite solar cells?

Put simply, perovskite solar cells aim to increase the efficiency and lower the cost of solar energy. Perovskite PVs indeed hold promise for high efficiencies, as well as low potential material & reduced processing costs. A big advantage perovskite PVs have over conventional solar technology is that they can react to various different wavelengths of light, which lets them convert more of the sunlight that reaches them into electricity.

Moreover, they offer flexibility, semi-transparency, tailored form factors, light-weight and more. Naturally, electronics designers and researchers are certain that such characteristics will open up many more applications for solar cells.

What is holding perovskite PVs back?

Despite its great potential, perovskite solar cell technology is still in the early stages of commercialization compared with other mature solar technologies as there are a number of concerns remaining.

One problem is their overall cost (for several reasons, mainly since currently the most common electrode material in perovskite solar cells is gold), and another is that cheaper perovskite solar cells have a short lifespan. Perovskite PVs also deteriorate rapidly in the presence of moisture and the decay products attack metal electrodes. Heavy encapsulation to protect perovskite can add to the cell cost and weight. Scaling up is another issue - reported high efficiency ratings have been achieved using small cells, which is great for lab testing, but too small to be used in an actual solar panel.

A major issue is toxicity - a substance called PbI is one of the breakdown products of perovskite. This is known to be toxic and there are concerns that it may be carcinogenic (although this is still an unproven point). Also, many perovskite cells use lead, a massive pollutant. Researchers are constantly seeking substitutions, and have already made working cells using tin instead. (with efficiency at only 6%, but improvements will surely follow).

What’s next?

While major challenges indeed exist, perovskite solar cells are still touted as the PV technology of the future, and much development work and research are put into making this a reality. Scientists and companies are working towards increasing efficiency and stability, prolonging lifetime and replacing toxic materials with safer ones. Researchers are also looking at the benefits of combining perovskites with other technologies, like silicon for example, to create what is referred to as “tandem cells”.

Commercial activity in the field of perovskite PV

In September 2015, Australia-based organic PV and perovskite solar cell (PSC) developer Dyesol declared a major breakthrough in perovskite stability for solar applications. Dyesol claims to have made a significant breakthrough on small perovskite solar cells, with “meaningful numbers” of 10% efficient strip cells exhibiting less than 10% relative degradation when exposed to continuous light soaking for over 1000 hours. Dyesol was also awarded a $0.5 million grant from the Australian Renewable Energy Agency (ARENA) to commercialize an innovative, very high efficiency perovskite solar cell.

Also in 2015, Saule Technologies signed an investment deal with Hideo Sawada, a Japanese investment company. Saule aims to combine perovskite solar cells with other currently available products, and this investment agreement came only a year after the company was launched.

In October 2020, Saule launched sunbreaker lamellas equipped with perovskite solar cells. The product is planned to soon be marketed across across Europe and potentially go global after that.

In August 2020, reports out of China suggested that a perovskite photovoltaic cell production line has gone into production in Quzhou, east China's Zhejiang Province. The 40-hectare factory was reportedly funded by Microquanta Semiconductor and expected to produce more than 200,000 square meters of photovoltaic glass before the end of 2020.

In September 2020, Oxford PV's Professor Henry Snaith stated that the Company's perovskite-based solar cells are scheduled to go on sale next year, probably by mid 2021. These will be perovskite solar cells integrated with standard silicon solar cells.

 

The latest perovskite solar news:

Researchers develop high-performance bifacial perovskite solar cells using single-walled carbon nanotubes

Researchers at the University of Surrey, University of Cambridge and Chinese Academy of Sciences, Xidian University, and Zhengzhou University have developed a novel approach for bifacial perovskite devices using single-walled carbon nanotubes as both front and back electrodes.

Single-walled carbon nanotubes offer high transparency, conductivity, and stability, enabling bifacial PSCs with a bifaciality factor of over 98% and a power generation density of over 36%. 

Read the full story Posted: Mar 19,2024

Researchers develop method to regulate the hole transport layer for efficient perovskite solar cells

Researchers at CAS (Chinese Academy of Sciences) and Henan University have developed a nanomaterial-regulated doping strategy to pre-oxidize spiro-OMeTAD into radicals in the precursor solution with tin sulfoxide (SnSO) nanomaterials prepared at high temperature. The team increased the photoelectric conversion efficiency (PCE) of perovskite solar cells (PSCs) to 24.5% using the inorganic SnSO as a dopant to oxidize and regulate the organic hole transport layer 2,2′,7,7′-tetrakis[N,N-di(4-methoxyphenyl)amino]-9,9-spirobifluorene (spiro-OMeTAD).

Spiro-OMeTAD is an important hole transport layer (HTL) material. To enhance the charge transport capability of spiro-OMeTAD, lithium trifluoromethanesulfonyl imide (Li-TFSI) is required to mediate the reaction between oxygen and spiro-OMeTAD. However, this traditional doping method has low doping efficiency, and excessive Li-TFSI will remain in the spiro-OMeTAD film, leading to a decrease in the compactness and long-term conductivity of the film. The duration of the oxidation reaction usually takes 10 to 24 hours to reach the desired conductivity and work function. In this study, the researchers developed a fast and reproducible strategy to control the oxidation of the nanomaterial. They used SnSO nanomaterial to pre-oxidize spiro-OMeTAD to spiro-OMeTAD+TFSI- free radicals in precursor solutions. This improved the conductivity, optimized the energy level position of HTL, and achieved a high PCE of 24.5%.

Read the full story Posted: Mar 18,2024

Researchers use BCP to boost the performance of perovskite solar cells

In a recent study by researchers from Henan University and the Chinese Academy of Sciences (CAS), the interface of indium tin oxide/electron transport layer (ITO/ETL) in n-i-p structured devices was targeted. Electron transport layers are typically fabricated using commercial nano tin dioxide, which often displays insufficient density. To combat this, the scientists employed the commonly used bathocuproine (BCP) material to treat the ITO/ETL interface. 

The incorporation of BCP diminishes the direct contact between the perovskite and ITO layers, while also passivating buried interface and adjusting the crystal orientation of perovskites. Furthermore, the substrate layer exhibits improved transparency, consequently elevating the utilization rate of light by perovskite.

Read the full story Posted: Mar 17,2024

Macnica develops a new air quality sensor that uses perovskite solar cells and semi-solid batteries

Macnica, a Technology Solutions Partner that provides products, services, and solutions, has announced a new type of air quality sensor that uses perovskite solar cells and semi-solid batteries. The sensor uses perovskite solar cells from EneCoat Technologies, a startup from Kyoto University.

It was reported that for several years, an indoor perovskite solar cell effectiveness demonstration project has been taking place in the company's office in Tokyo. Through this demonstration project, it was reportedly demonstrated that the technology can become a sustainable energy source in the future, including use under low illumination, and data on various issues was gathered toward the practical application of perovskite solar cells.

Read the full story Posted: Mar 14,2024

Researchers examine prospects of vapor-based deposition to short track perovskite PV's road to commercialization

A large international group of researchers worked together to form a balanced viewpoint on the prospects of vapor-based processing of perovskite PV on an industrial scale. 

Their perspective highlights the conceptual advantages of vapor phase deposition, discusses the most crucial process parameters in a technology assessment, contains an overview about relevant global industry clusters, and provides an outlook on the commercialization perspectives of the perovskite technology in general.

Read the full story Posted: Mar 10,2024

Kunshan GCL Photoelectric Materials announces 19.04% efficiency on single-junction perovskite modules (1,000mmx2,000mm)

Reports suggest that China-based GCL (via its new subsidiary Kunshan GCL Photoelectric Materials) has achieved a photoelectric conversion efficiency of 19.04% on a 1,000mm x 2,000mm single-junction perovskite solar module. The result was reportedly officially tested by the China National Institute of Metrology to confirm the results.

The GCL Perovskite team stated it is "delighted to have achieved its goal of surpassing the expected conversion efficiency of 19% for standard-sized perovskite modules, having previously achieved 18.04% conversion efficiency for a single-junction perovskite solar module in November 2023". And the team is one step closer to its efficiency target of 26% for a 2m² (1,000mm × 2,000mm) single-junction perovskite solar module, while focusing on research and development for the next generation of tandem perovskite modules.

Read the full story Posted: Mar 09,2024

Japan to promote perovskite solar technology through feed-in tariffs

According to reports, Japan's government plans to advance perovskite  flexible solar power panels through the country's feed-in tariff system, seeking to encourage investment in the technology. The Ministry of Economy, Trade and Industry plans to set the price of energy produced from perovskite cells at 10 yen (6 cents) per kilowatt-hour or more, higher than the current level for solar power, starting as early as fiscal 2025.

Light, flexible perovskite cells can generate electricity in places where traditional solar panel installation is not feasible, such as building walls and windows. The base technology is Japanese, and Japanese companies are involved in vigorous R&D with emphasis on quality and durability. At the same time, Chinese companies have begun mass production and are leading in commercialization.

Read the full story Posted: Mar 08,2024

Researchers develop method for re-manufacturing perovskite solar cells and modules

An international group o researchers, including ones from the Fraunhofer Institute for Solar Energy Systems ISE, Solaronix, University of Cambridge, École Polytechnique Fédérale de Lausanne (EPFL) and others, have developed a method to re-manufacture fully encapsulated perovskite solar cells after recycling. According to the researchers, the re-manufactured devices can achieve 88% of their original efficiency.

The novel method for re-manufacturing perovskite solar cells (PSCs) uses carbon-based electrodes (CPSMs). Re- manufacturing, as opposed to merely recycling, is described as the combination of re-used, recycled, repaired, or replaced parts to make a new product. “In this work, we demonstrate for the first time a re-manufacturing strategy for glass-glass encapsulated perovskite solar cells,” the scientists stated. “Our study presents a facile experimental method to remove the edge-sealant, encapsulant, back electrode, and degraded perovskite, allowing reuse of the device constituents.”

Read the full story Posted: Mar 06,2024

Printed flexible solar cells by CSIRO launched on Space Machine Company’s Optimus-1 satellite, as part of Space X’s Transporter-10 mission

Eight mini-modules of the Commonwealth Scientific and Industrial Research Organization's (CSIRO) printed flexible solar cells were attached to the surface of Australia-based space transportation provider Space Machine Company’s Optimus-1 satellite, that was sent into orbit from the United States as part of Elon Musk’s Space X’s Transporter-10 mission.

A statement from the national science agency following the launch from Vandenberg Space Force Base in California explained that it is exploring such solar cells as a reliable energy source for future missions. Eight mini-modules of the printed flexible solar cells were attached to the surface of Optimus-1.

Read the full story Posted: Mar 05,2024