Perovskite Solar

What are perovskite?

Perovskites are a class of materials that share a similar structure, which display a myriad of exciting properties like superconductivity, magnetoresistance and more. These easily synthesized materials are considered the future of solar cells, as their distinctive structure makes them perfect for enabling low-cost, efficient photovoltaics. They are also predicted to play a role in next-gen electric vehicle batteries, sensors, lasers and much more.

Perovskite-image

How does the PV market look today?

In general, Photovoltaic (PV) technologies can be viewed as divided into two main categories: wafer-based PV (also called 1st generation PVs) and thin-film cell PVs. Traditional crystalline silicon (c-Si) cells (both single crystalline silicon and multi-crystalline silicon) and gallium arsenide (GaAs) cells belong to the wafer-based PVs, with c-Si cells dominating the current PV market (about 90% market share) and GaAs exhibiting the highest efficiency.

Perovskite-solar-cell

Thin-film cells normally absorb light more efficiently than silicon, allowing the use of extremely thin films. Cadmium telluride (CdTe) technology has been successfully commercialized, with more than 20% cell efficiency and 17.5% module efficiency record and such cells currently hold about 5% of the total market. Other commercial thin-film technologies include hydrogenated amorphous silicon (a-Si:H) and copper indium gallium (di)selenide (CIGS) cells, taking approximately 2% market share each today. Copper zinc tin sulphide technology has been under R&D for years and will probably require some time until actual commercialization.

What is a perovskite solar cell?

An emerging thin-film PV class is being formed, also called 3rd generation PVs, which refers to PVs using technologies that have the potential to overcome current efficiency and performance limits or are based on novel materials. This 3rd generation of PVs includes DSSC, organic photovoltaic (OPV), quantum dot (QD) PV and perovskite PV.

A perovskite solar cell is a type of solar cell which includes a perovskite structured compound, most commonly a hybrid organic-inorganic lead or tin halide-based material, as the light-harvesting active layer. Perovskite materials such as methylammonium lead halides are cheap to produce and relatively simple to manufacture. Perovskites possess intrinsic properties like broad absorption spectrum, fast charge separation, long transport distance of electrons and holes, long carrier separation lifetime, and more, that make them very promising materials for solid-state solar cells.

Perovskite-solar-cell

Perovskite solar cells are, without a doubt, the rising star in the field of photovoltaics. They are causing excitement within the solar power industry with their ability to absorb light across almost all visible wavelengths, exceptional power conversion efficiencies already exceeding 20% in the lab, and relative ease of fabrication. Perovskite solar cells still face several challenge, but much work is put into facing them and some companies, are already talking about commercializing them in the near future.



What are the advantages of Perovskite solar cells?

Put simply, perovskite solar cells aim to increase the efficiency and lower the cost of solar energy. Perovskite PVs indeed hold promise for high efficiencies, as well as low potential material & reduced processing costs. A big advantage perovskite PVs have over conventional solar technology is that they can react to various different wavelengths of light, which lets them convert more of the sunlight that reaches them into electricity.

Moreover, they offer flexibility, semi-transparency, tailored form factors, light-weight and more. Naturally, electronics designers and researchers are certain that such characteristics will open up many more applications for solar cells.

What is holding perovskite PVs back?

Despite its great potential, perovskite solar cell technology is still in the early stages of commercialization compared with other mature solar technologies as there are a number of concerns remaining.

One problem is their overall cost (for several reasons, mainly since currently the most common electrode material in perovskite solar cells is gold), and another is that cheaper perovskite solar cells have a short lifespan. Perovskite PVs also deteriorate rapidly in the presence of moisture and the decay products attack metal electrodes. Heavy encapsulation to protect perovskite can add to the cell cost and weight. Scaling up is another issue - reported high efficiency ratings have been achieved using small cells, which is great for lab testing, but too small to be used in an actual solar panel.

A major issue is toxicity - a substance called PbI is one of the breakdown products of perovskite. This is known to be toxic and there are concerns that it may be carcinogenic (although this is still an unproven point). Also, many perovskite cells use lead, a massive pollutant. Researchers are constantly seeking substitutions, and have already made working cells using tin instead. (with efficiency at only 6%, but improvements will surely follow).

What’s next?

While major challenges indeed exist, perovskite solar cells are still touted as the PV technology of the future, and much development work and research are put into making this a reality. Scientists and companies are working towards increasing efficiency and stability, prolonging lifetime and replacing toxic materials with safer ones. Researchers are also looking at the benefits of combining perovskites with other technologies, like silicon for example, to create what is referred to as “tandem cells”.

Commercial activity in the field of perovskite PV

In September 2015, Australia-based organic PV and perovskite solar cell (PSC) developer Dyesol declared a major breakthrough in perovskite stability for solar applications. Dyesol claims to have made a significant breakthrough on small perovskite solar cells, with “meaningful numbers” of 10% efficient strip cells exhibiting less than 10% relative degradation when exposed to continuous light soaking for over 1000 hours. Dyesol was also awarded a $0.5 million grant from the Australian Renewable Energy Agency (ARENA) to commercialize an innovative, very high efficiency perovskite solar cell.

Also in 2015, Saule Technologies signed an investment deal with Hideo Sawada, a Japanese investment company. Saule aims to combine perovskite solar cells with other currently available products, and this investment agreement came only a year after the company was launched.

In October 2020, Saule launched sunbreaker lamellas equipped with perovskite solar cells. The product is planned to soon be marketed across across Europe and potentially go global after that.

In August 2020, reports out of China suggested that a perovskite photovoltaic cell production line has gone into production in Quzhou, east China's Zhejiang Province. The 40-hectare factory was reportedly funded by Microquanta Semiconductor and expected to produce more than 200,000 square meters of photovoltaic glass before the end of 2020.

In September 2020, Oxford PV's Professor Henry Snaith stated that the Company's perovskite-based solar cells are scheduled to go on sale next year, probably by mid 2021. These will be perovskite solar cells integrated with standard silicon solar cells.

 

The latest perovskite solar news:

Researchers improve perovskite solar cells through novel solvent design

Researchers from Rice University, Northwestern University, Purdue University, University of Washington, CNRS and Argonne National Laboratory have addressed a long-standing issue in making stable, efficient solar panels out of halide perovskites. It took finding the right solvent design to apply a 2D top layer of desired composition and thickness without destroying the 3D bottom one (or vice versa). Such a cell would turn more sunlight into electricity than either layer on its own, with better stability.

The team, led by Chemical and biomolecular engineer Aditya Mohite and his lab at Rice’s George R. Brown School of Engineering, recently reported their success at building thin 3D/2D solar cells that deliver a power conversion efficiency of 24.5%.

Read the full story Posted: Sep 24,2022

Researchers reach 22.31% efficiency of inverted perovskite solar cell using electron-accepting interlayer

Researchers from Korea University and Seoul Women's University have developed an inverted perovskite solar cell by introducing an electron-accepting interlayer at the interface between the perovskite layer and the electron transport layer.

The solar cell has a p-i-n structure (the perovskite cell material is deposited onto the hole transport layer and then coated with the electron transport layer), which is the opposite of the conventional n-i-p device structure. Inverted perovskite solar cells tend to show good stability, but lack in terms of conversion efficiency and cell performance.

Read the full story Posted: Sep 24,2022

New JV by China's Boamax and others to develop perovskite solar cells

Chinese equipment maker, Boamax Technologies Group, has announced a joint venture with researchers from Xidian University and another investor to develop and sell perovskite solar cells. The venture will also make production equipment and raw materials.

Boamax will have a 37% stake in the JV. A partnership formed by the Xidian  scholars will contribute its patent technologies to hold 45.5% of the equity. The third investor party will have an 18.2% stake. 

Read the full story Posted: Sep 22,2022

Researchers devise new strategy for fabrication of efficient narrow bandgap perovskite films

Researchers at University of North Carolina at Chapell Hill and University of Rochester have developed a novel hot gas-assisted method that could improve the fabrication of narrow bandgap (NBG) perovskite films for tandem solar cells. This strategy, combined with an anti-oxidation material added in the film, could increase the solar cells' carrier recombination lifetime (i.e., the time it takes for excess charge carriers to decay).

The researchers explained that all-perovskite tandem perovskite solar cells have the potential to reduce the cost of photovoltaic systems, due to their potential to reach a higher efficiency than their single-junction counterparts, while maintaining the solution fabrication processes. They said that compared to single junction perovskite modules, the application of tandem structures, which have much smaller photocurrents but higher photovoltage, can also reduce the cell-to-module efficiency derate and enable the realization of higher module efficiencies for monolithically interconnected modules in a series.

Read the full story Posted: Sep 19,2022

Researchers fabricate flexible roll-to-roll perovskite solar cells with 16.7% efficiency

Researchers at CSIRO and Monash University have reported a flexible perovskite solar cell manufactured using roll-to-roll compatible “printing” type processes, which could potentially be used in large-scale manufacturing. To achieve this, the team developed a viable roll-to-roll process to deposit the electrode layer, which has thus far been a major challenge. The team managed to fabricated cells which achieved a maximum efficiency of 16.7%.

Researchers fabricate flexible roll-to-roll perovskite solar cells with 16.7% efficiency image

Photo: Hasitha Weerasinghe/CSIRO

Roll-to-roll processes signify a potential for low-cost manufacturing of flexible perovskites. However, adding the electrode layer in a process compatible with the roll-to-roll setup has proven to be a challenge. The research team in this recent work set out to address this issue and develop a process that could allow the electrode layer to be deposited without the need for solvents or heat treatments that potentially damage the perovskite layer as well.

Read the full story Posted: Sep 16,2022

Researchers use nanosecond laser to fabricate perovskite solar module with 21.07% efficiency

Scientists from China's Jinan University, CoreTech Integrated Limited and Chinese Academy of Sciences have used selective nanosecond-pulse, laser-induced ablation to create a perovskite solar module with a reduced heat-affected zone.

The team showed that a nanosecond pulse laser can deliver a reduced heat-affected zone due to the small thermal diffusion coefficient (Dt) of the perovskite material, contributing to the accomplishment of a high geometric filling factor  (GFF) of up to 95.5%. In addition, the monolithic interconnection quality was improved by finely lifting off the capping layers on indium tin oxide and identifying the residue within the scribed area. As a result, a certified aperture area efficiency of 21.07% under standard 100 mW cm−2 AM1.5G illumination was achieved with a high photovoltaic fill factor exceeding 80%.

Read the full story Posted: Sep 15,2022

Stores in Poland use perovskite shelf labels and blinds by Saule technologies

Saule Technologies recently shared that its PESL (Perovskite Electronic Shelf Label) technology - electronic price and advertising labels powered by perovskite photovoltaic cells - have been installed at Żabka Eko Smart in Poznan, Poland. In addition, the same venue sports Saule's blinds that allow for generating energy from both natural and artificial light.

Zabka stores in Poland use perovskite tech by Saule image

Saule shared that these unique technologies are aimed at improving the work of Żabka stores and increasing the comfort of customers and employees while maintaining care for the environment. 

Read the full story Posted: Sep 15,2022

Researchers improve flexible perovskite solar cells with succinate additive

A team of researchers from China's Tsinghua University, National Center for Nanoscience and Technology and Switzerland's Institute of Computational Physics (ICP) of the ZHAW School of Engineering have proposed a strategy to reduce defects and microstrains in perovskite films through multifunctional additives, achieving a record PCE of 23.6% for single-junction flexible perovskite solar cells (FPSCs).

Team develop additive for better flexible perovskite solar cells image

Flexible perovskite solar cells (FPSCs) prepared on flexible substrates, which possess excellent flexibility and a high power-to-weight ratio, hold promise as a power source for wearable electronic devices, aerospace, and building integrated photovoltaics (BIPVs). Further improving the power conversion efficiency (PCE) and bending resistance of flexible devices is key to promoting their practical application.

Read the full story Posted: Sep 12,2022

Researchers explore potential-induced degradation in perovskite/silicon tandem modules

Scientists from King Abdullah University of Science and Technology (KAUST) and Solar Energy Research Institute of Singapore (SERIS) have examined the potential-induced degradation (PID) susceptibility of perovskite-silicon tandem devices fabricated in their lab. They exposed tandem cell devices to PID stress and found that they lost as much as 50% of their initial performance after just one day. This led the team to assess that more work needs to be done on the issue before perovskites can be commercialized and deployed at scale.

Research on perovskite solar cells' stability challenges has largely focused on the material’s sensitivity to moisture, high temperatures, and other environmental conditions. Potential-induced degradation (PID), caused by currents leaking from the cell and driving various damaging mechanisms, has long been a threat to performance in silicon PV modules, but has so far been much less explored in emerging PV technologies such as perovskite.

Read the full story Posted: Sep 09,2022