Article last updated on: Feb 16, 2019

What are perovskite?

Perovskites are a class of materials that share a similar structure, which display a myriad of exciting properties like superconductivity, magnetoresistance and more. These easily synthesized materials are considered the future of solar cells, as their distinctive structure makes them perfect for enabling low-cost, efficient photovoltaics. They are also predicted to play a role in next-gen electric vehicle batteries, sensors, lasers and much more.

How does the PV market look today?

In general, Photovoltaic (PV) technologies can be viewed as divided into two main categories: wafer-based PV (also called 1st generation PVs) and thin-film cell PVs. Traditional crystalline silicon (c-Si) cells (both single crystalline silicon and multi-crystalline silicon) and gallium arsenide (GaAs) cells belong to the wafer-based PVs, with c-Si cells dominating the current PV market (about 90% market share) and GaAs exhibiting the highest efficiency.

Perovskite solar cell market image

Thin-film cells normally absorb light more efficiently than silicon, allowing the use of extremely thin films. Cadmium telluride (CdTe) technology has been successfully commercialized, with more than 20% cell efficiency and 17.5% module efficiency record and such cells currently hold about 5% of the total market. Other commercial thin-film technologies include hydrogenated amorphous silicon (a-Si:H) and copper indium gallium (di)selenide (CIGS) cells, taking approximately 2% market share each today. Copper zinc tin sulphide technology has been under R&D for years and will probably require some time until actual commercialization.

What is a perovskite solar cell?

An emerging thin-film PV class is being formed, also called 3rd generation PVs, which refers to PVs using technologies that have the potential to overcome current efficiency and performance limits or are based on novel materials. This 3rd generation of PVs includes DSSC, organic photovoltaic (OPV), quantum dot (QD) PV and perovskite PV.



A perovskite solar cell is a type of solar cell which includes a perovskite structured compound, most commonly a hybrid organic-inorganic lead or tin halide-based material, as the light-harvesting active layer. Perovskite materials such as methylammonium lead halides are cheap to produce and relatively simple to manufacture. Perovskites possess intrinsic properties like broad absorption spectrum, fast charge separation, long transport distance of electrons and holes, long carrier separation lifetime, and more, that make them very promising materials for solid-state solar cells.

Perovskite solar cell image

Perovskite solar cells are, without a doubt, the rising star in the field of photovoltaics. They are causing excitement within the solar power industry with their ability to absorb light across almost all visible wavelengths, exceptional power conversion efficiencies already exceeding 20% in the lab, and relative ease of fabrication. Perovskite solar cells still face several challenge, but much work is put into facing them and some companies, are already talking about commercializing them in the near future.

What are the advantages of Perovskite solar cells?

Put simply, perovskite solar cells aim to increase the efficiency and lower the cost of solar energy. Perovskite PVs indeed hold promise for high efficiencies, as well as low potential material & reduced processing costs. A big advantage perovskite PVs have over conventional solar technology is that they can react to various different wavelengths of light, which lets them convert more of the sunlight that reaches them into electricity.

Moreover, they offer flexibility, semi-transparency, tailored form factors, light-weight and more. Naturally, electronics designers and researchers are certain that such characteristics will open up many more applications for solar cells.

What is holding perovskite PVs back?

Despite its great potential, perovskite solar cell technology is still in the early stages of commercialization compared with other mature solar technologies as there are a number of concerns remaining.

One problem is their overall cost (for several reasons, mainly since currently the most common electrode material in perovskite solar cells is gold), and another is that cheaper perovskite solar cells have a short lifespan. Perovskite PVs also deteriorate rapidly in the presence of moisture and the decay products attack metal electrodes. Heavy encapsulation to protect perovskite can add to the cell cost and weight. Scaling up is another issue - reported high efficiency ratings have been achieved using small cells, which is great for lab testing, but too small to be used in an actual solar panel.

A major issue is toxicity - a substance called PbI is one of the breakdown products of perovskite. This is known to be toxic and there are concerns that it may be carcinogenic (although this is still an unproven point). Also, many perovskite cells use lead, a massive pollutant. Researchers are constantly seeking substitutions, and have already made working cells using tin instead. (with efficiency at only 6%, but improvements will surely follow).

What’s next?

While major challenges indeed exist, perovskite solar cells are still touted as the PV technology of the future, and much development work and research are put into making this a reality. Scientists and companies are working towards increasing efficiency and stability, prolonging lifetime and replacing toxic materials with safer ones. Researchers are also looking at the benefits of combining perovskites with other technologies, like silicon for example, to create what is referred to as “tandem cells”.

Commercial activity in the field of perovskite PV

In September 2015, Australia-based organic PV and perovskite solar cell (PSC) developer Dyesol declared a major breakthrough in perovskite stability for solar applications. Dyesol claims to have made a significant breakthrough on small perovskite solar cells, with “meaningful numbers” of 10% efficient strip cells exhibiting less than 10% relative degradation when exposed to continuous light soaking for over 1000 hours. Dyesol was also awarded a $0.5 million grant from the Australian Renewable Energy Agency (ARENA) to commercialize an innovative, very high efficiency perovskite solar cell.

Also in 2015, Saule Technologies signed an investment deal with Hideo Sawada, a Japanese investment company. Saule aims to combine perovskite solar cells with other currently available products, and this investment agreement came only a year after the company was launched.

The latest perovskite solar news:

LayTec’s new InspiRe in-situ tool used for monitoring perovskite formation

Germany-based in-situ metrology system maker LayTec has announced that its new InspiRe system applies high-speed in-situ reflectance measurements for monitoring perovskite thin-film formations during spin-coating and subsequent annealing.

LayTec’s new InspiRe in-situ tool for control of perovskite formation image

In collaboration with professor Norbert Nickel’s group at HZB, LayTec designed the InspiRe in-situ metrology system, which was applied to monitor both spin-coating and annealing. Gathering data at a time resolution on the millisecond scale allows resolving of the kinetics and phase formations during film formation.

KAUST and University of Toronto team develops perovksite-silicon tandem cell with 25.7% efficiency

Scientists from the King Abdullah University of Science and Technology (KAUST) in Saudi Arabia and University of Toronto, have developed a perovskite-silicon tandem solar cell which they claim showed excellent operational stability under accelerated tests.

The device was made by combining solution-processed, micrometer-thick perovskite top cells with fully textured silicon heterojunction bottom cells.

ANU reaches 27.7% efficiency with silicon/perovskite tandem solar cell

Researchers at The Australian National University (ANU) have announced an impressive achievement - a silicon/perovskite tandem solar cell with a conversion efficiency of 27.7%.

Professor Kylie Catchpole says this would only need to improve slightly - to around 30% - before the technology could be rolled out around the world. "In comparison, typical solar panels being installed on rooftops at the moment have an efficiency around 20%" Professor Catchpole said.

Supercomputer simulations deepen understanding of perovskite materials' performance

A team of researchers at EPFL collaborated with the Swiss National Supercomputing Center (referred to as CSCS) to gain a better understanding of the physics behind perovskites' photovoltaic performance, that may facilitate the design of new materials with favorable properties in the future.

The results of the simulations on “Piz Daint” supercomputer imageThe results of the simulations on “Piz Daint”: The image on the left shows the spatial arrangement of the electron holes (magenta); the one on the right shows the location of the extra electrons (green). (Image: Francesco Ambrosio)

The researchers used the “Piz Daint” supercomputer at CSCS to investigate a perovskite material called methylammonium triiodoplumbate (CH3NH3PbI3) — a material that can harvest sunlight with excellent efficiency because of a vital property: the exceptionally long lifetime of its charge carriers.

A change in chemical composition could boost stability of perovskite solar cells

Researchers from Colorado University in Boulder with the US Department of Energy’s National Renewable Energy Laboratory (NREL) have shown how a change in chemical composition managed to boost the longevity and efficiency of a perovskite solar cell.

The new formula reportedly enabled the solar cell to resist a stability problem that has so far thwarted the commercialization of perovskites. The problem is known as light-induced phase-segregation, which occurs when the alloys that make up the solar cells break down under exposure to continuous light.