Perovskite Solar - Page 2

Researchers show how 2D perovskitoids enhance stability in perovskite solar cells

Researchers from Northwestern University, University of Toronto and KAUST have hypothesized that perovskitoids, with robust organic-inorganic networks enabled by edge- and face-sharing, could impede ion migration. This addresses the issue of the migration of cations between 2D and 3D layers which results in the disruption of octahedral networks that leads to degradation in performance over time

The scientists explored a set of perovskitoids of varying dimensionality, and found that cation migration within perovskitoid/perovskite heterostructures was suppressed compared to the 2D/3D perovskite case. Increasing the dimensionality of perovskitoids improves charge transport when they are interfaced with 3D perovskite surfaces – the result of enhanced octahedral connectivity and out-of-plane orientation. 

Read the full story Posted: Jul 11,2024

Researchers develop efficient 2D Dion-Jacobson perovskite solar cell based on MXene contacts

Researchers at India's Chitkara University Institute of Engineering and Technology have developed 2D perovskite solar cells with MXene materials to build a PV device with remarkable efficiency and open-circuit voltage. The scientists claim the new cell architecture can help charge carriers move smoothly through the cell layers and reduce recombination losses.

The team's 2D DJ perovskite solar cell implemented bandgap grading techniques and use contacts based on a functionalized two-dimensional titanium carbide known as MXene. MXenes are compounds that take their name from their graphene-like morphology and are made via selective etching of certain atomic layers from a bulk crystal known as MAX. Recently, MXenes materials have shown promise for use in PV technology due to their unique optoelectronic properties, such as their large charge carrier mobility, excellent metallic conductivity, high optical transmittance, and tunable work function (WF).

Read the full story Posted: Jul 10,2024

BOE to invest over USD$100 million in new perovskite PV pilot line

Reports suggest that a new pilot line for the production of perovskite solar cells has been approved by the administrative committee of Xinzhan Hi-Tech Zone, Hefei City, Anhui Province, China. 

The project is initiated by Hefei BOE PV Company, a holding subsidiary of BOE Technology Group Co. (BOE), a company that is known to have launched a project to enter the photovoltaic industry by investing in perovskite solar cells. BOE reportedly plans to invest 871 million yuan (approximately US$119.85 million) to set up the pilot line for perovskite solar cells. 

Read the full story Posted: Jul 09,2024

Researchers use high-entropy hybrid perovskites to design efficient and stable perovskite solar cells

Researchers from China's Zhejiang University, Westlake University, Southern University of Science and Technology, Chinese Academy of Sciences (CAS) and University of California Los Angeles in the U.S have reported a family of high-entropy organic–inorganic hybrid perovskites for photovoltaic applications.  

The scientists built, for the first time, an inverted perovskite solar cell relying on a high-entropy hybrid perovskite material. The result is a device with an improved open-circuit voltage and fill factor, due to reduced non-radiative recombinations and optimized interface.

Read the full story Posted: Jul 07,2024

Researchers improve the stability of perovskite solar cells with novel encapsulation method

Researchers at CHOSE (Centre for Hybrid and Organic Solar Energy, University of Rome Tor Vergata), BeDimensional, Istituto Italiano di Tecnologia and GreatCell Solar Italia recently addressed the stability issues presented by perovskite solar cells, by developing an industrial encapsulation process based on the lamination of highly viscoelastic semi-solid/highly viscous liquid adhesive atop perovskite solar cells and modules. 

Sketch of the structure of the mesoscopic n-i-p PSCs. Image credit: Nature Communications 

The encapsulant reportedly reduces the thermomechanical stresses at the encapsulant/rear electrode interface. The addition of thermally conductive two-dimensional hexagonal boron nitride into the polymeric matrix improves the barrier and thermal management properties of the encapsulant. Without any edge sealant, encapsulated devices withstood multifaceted accelerated ageing tests, retaining >80% of their initial efficiency.

Read the full story Posted: Jul 06,2024

Researchers develop perovskite solar cells with improved performance using an organic electron-rich surface passivation layer

Researchers from Zhejiang University of Technology and King Abdullah University of Science and Technology (KAUST) have utilized two sulfone-based organic molecules known as diphenylsulfone (DPS) and 4,4′-dimethyldiphenylsulfone (DMPS) to passivate absorber defects in perovskite solar cells and improve their performance. As a result, the team reported a device with a higher electron cloud density at the interface between the perovskite material and the passivation layer.

The scientists used the molecules to improve charge distribution at the interface between the cell's perovskite absorber and the passivation layer, which reportedly creates electron-rich systems on the surface of perovskite. Using density functional theory (DFT) to compute a wide variety of properties of almost any kind of atomic system, they simulated the charge density distributions of the interactions of DPS and DMPS with formamidinium lead iodide (FAPbI3) perovskite material.

Read the full story Posted: Jul 05,2024

Researchers design 4T perovskite/perovskite/silicon triple-junction tandem solar cell with 31.5% efficiency

Researchers from King Abdullah University of Science and Technology (KAUST) have reported four-terminal perovskite/perovskite/silicon triple-junction tandem solar cells, with the device structure comprising a perovskite single-junction top cell and monolithic perovskite/silicon tandem bottom cell.

The cells reportedly yielded a 31.5% power conversion efficiency, which the team said is the highest efficiency ever reported for perovskite-based 4-T and triple-junction tandem solar cells. The key feature of the cell is the hole transport layer of the top perovskite cell, which was engineered with self-assembled monolayers.

Read the full story Posted: Jul 03,2024

Researchers develop method based on silicon nanoantennas to improve perovskite solar cells

Researchers from Harbin Engineering University, ITMO University and Hellenic Mediterranean University have managed to improve perovskite solar cells with the help of silicon nanoantennas, which increase the concentration of light in the material at certain wavelengths. The team applied monodisperse silicon nanoparticles to investigate optical effects responsible for the improvement of perovskite solar cells. This method could someday be used to create solar cells for indoor lighting and even the space industry. 

Solar cells and batteries in general can be improved by developing semiconductor materials that efficiently absorb light. Perovskites are considered promising since they are light, thin, and easy-to-produce and can be used to make thin solar cells with varied bending shapes, low weight, and multiple applications. Like other semiconductors, perovskites, however, absorb just a fraction of the spectrum and therefore generate less energy than they receive from the source. To that end, the international team of scientists has developed perovskite solar cells using silicon-based optical resonant nanoantennas. 

Read the full story Posted: Jul 01,2024

Researchers develop efficient inverted perovskite solar cell using indium doped nickel oxide as HTL

Researchers from Colombia's Universidad de los Andes recently set out to develop inverted perovskite solar cells (IPSCs) with a hole transport layer based on indium-doped nickel oxide. The result is a champion device that achieved an efficiency of 20.06% with remarkable stability.

The team explained that NiOx has an energy gap of over 3.5 eV, exceptional chemical stability, durability, low toxicity, and cost-effective processing. The scientists said that in the case of NiOx-based inverted perovskite solar cells, the doping approach has indeed paved the way for HTL optimization, frequently through observable improvements also at the interface level and in the perovskite layer.

Read the full story Posted: Jun 28,2024

Researchers develop 'self-healing' dynamic passivation method for better perovskite solar cells

Researchers from Monash University, Xi’an Jiaotong University, Tunghai University, the University of Oxford, National Central University, and the City University of Hong Kong have developed a strategy to enhance the stability and performance of perovskite solar cells (PSCs) through a mechanism described as 'self-healing'.

The team reported a living passivation strategy using a hindered urea/thiocarbamate bond Lewis acid-base material (HUBLA), where dynamic covalent bonds with water and heat-activated characteristics can dynamically heal the perovskite to ensure device performance and stability. 

Read the full story Posted: Jun 27,2024