Article last updated on: Feb 16, 2019

What are perovskite?

Perovskites are a class of materials that share a similar structure, which display a myriad of exciting properties like superconductivity, magnetoresistance and more. These easily synthesized materials are considered the future of solar cells, as their distinctive structure makes them perfect for enabling low-cost, efficient photovoltaics. They are also predicted to play a role in next-gen electric vehicle batteries, sensors, lasers and much more.

How does the PV market look today?

In general, Photovoltaic (PV) technologies can be viewed as divided into two main categories: wafer-based PV (also called 1st generation PVs) and thin-film cell PVs. Traditional crystalline silicon (c-Si) cells (both single crystalline silicon and multi-crystalline silicon) and gallium arsenide (GaAs) cells belong to the wafer-based PVs, with c-Si cells dominating the current PV market (about 90% market share) and GaAs exhibiting the highest efficiency.

Perovskite solar cell market image

Thin-film cells normally absorb light more efficiently than silicon, allowing the use of extremely thin films. Cadmium telluride (CdTe) technology has been successfully commercialized, with more than 20% cell efficiency and 17.5% module efficiency record and such cells currently hold about 5% of the total market. Other commercial thin-film technologies include hydrogenated amorphous silicon (a-Si:H) and copper indium gallium (di)selenide (CIGS) cells, taking approximately 2% market share each today. Copper zinc tin sulphide technology has been under R&D for years and will probably require some time until actual commercialization.

What is a perovskite solar cell?

An emerging thin-film PV class is being formed, also called 3rd generation PVs, which refers to PVs using technologies that have the potential to overcome current efficiency and performance limits or are based on novel materials. This 3rd generation of PVs includes DSSC, organic photovoltaic (OPV), quantum dot (QD) PV and perovskite PV.

A perovskite solar cell is a type of solar cell which includes a perovskite structured compound, most commonly a hybrid organic-inorganic lead or tin halide-based material, as the light-harvesting active layer. Perovskite materials such as methylammonium lead halides are cheap to produce and relatively simple to manufacture. Perovskites possess intrinsic properties like broad absorption spectrum, fast charge separation, long transport distance of electrons and holes, long carrier separation lifetime, and more, that make them very promising materials for solid-state solar cells.

Perovskite solar cell image

Perovskite solar cells are, without a doubt, the rising star in the field of photovoltaics. They are causing excitement within the solar power industry with their ability to absorb light across almost all visible wavelengths, exceptional power conversion efficiencies already exceeding 20% in the lab, and relative ease of fabrication. Perovskite solar cells still face several challenge, but much work is put into facing them and some companies, are already talking about commercializing them in the near future.

What are the advantages of Perovskite solar cells?

Put simply, perovskite solar cells aim to increase the efficiency and lower the cost of solar energy. Perovskite PVs indeed hold promise for high efficiencies, as well as low potential material & reduced processing costs. A big advantage perovskite PVs have over conventional solar technology is that they can react to various different wavelengths of light, which lets them convert more of the sunlight that reaches them into electricity.

Moreover, they offer flexibility, semi-transparency, tailored form factors, light-weight and more. Naturally, electronics designers and researchers are certain that such characteristics will open up many more applications for solar cells.

The latest perovskite solar news:

Researchers reduce reflection losses and reach 25.2% conversion efficiency in perovskite/silicon tandem solar cells

Researchers from HZB, Oxford University, Technical University Berlin and Oxford PV have shown that the infrared reflection losses in tandem cells processed on a flat silicon substrate (such as perovskite/silicon tandem cells) can be significantly reduced by using an optical interlayer, consisting of nanocrystalline silicon oxide. Based on this, the team managed to achieve impressive efficiency and reported that the best tandem device in this work reached a certified conversion efficiency of 25.2%.

Researchers at HZB and Oxford reduce reflection losses and reach 25.2% conversion efficiency in perovskte/silicon tandem solar cells imagea) Cross-section of the simulated monolithic perovskite/SHJ tandem cell (layer thicknesses and morphological features not to scale). b) Cross-sectional SEM image of the top region of the tandem device.

Perovskite/silicon tandem solar cells are attractive for their potential for boosting cell efficiency beyond the crystalline silicon (Si) single-junction limit. However, the relatively large optical refractive index of Si, in comparison to that of transparent conducting oxides and perovskite absorber layers, often results in significant reflection losses at the internal junction between the cells in monolithic (two-terminal) devices. Therefore, light management is crucial for improving photocurrent absorption in the Si bottom cell.

Brazilian oil giant invests millions in perovskite solar R&D

Brazilian state-run oil major Petroleo Brasileiro, or Petrobras, has signed a partnership deal with Centro de Inovacoes CSEM Brazil to develop materials for the production of printed and flexible solar cells based on perovskite technology.

Under the research and development (R&D) agreement, Petrobras will invest BRL 23.77 million (USD 6.2 million/EUR 5.6 million) over a 30-month period. The main goal is the production of a prototype module and obtaining the know-how needed to make the industrial production of solar films with perovskite technology technically and economically viable.

Adding cesium and rubidium salt improves the performance of perovskite solar cells

A team of researchers from UC San Diego, Georgia Institute of Technology, Purdue University, MIT and Argonne National Laboratory has reported new findings on perovskites, that could pave the way to developing low-cost, high-efficiency solar cells. Using high-intensity X-ray mapping, they explain why adding small amounts of cesium and rubidium salt improves the performance of lead-halide perovskites.

Adding cesium and rubidium salt improves the performance of perovskite solar cells

“Perovskites could really change the game in solar. They have the potential to reduce costs without giving up performance. But there’s still a lot to learn fundamentally about these materials,” said David Fenning, a professor of nanoengineering at the University of California San Diego and co-senior author of the study. “We’re looking deeper into some of the state-of-the-art chemistries to understand what drives perovskite performance and why they work so well.”

HZB team achieves 21.6% efficiency for perovskite CIGS tandem solar cell

Researchers at the Germany-based Helmholtz Center Berlin (HZB) have announced a thin-film solar cell made of perovskite and copper-indium-gallium-selenide (CIGS) with an efficiency of 21.6%.

The HZB researchers said they used a simple, robust production process suitable for scaling up. Rutger Schlatmann, director of the HZB’s Institute PVcomB, spoke of an “enormous step in the direction of commercial production”. The HZB team’s tandem cell could theoretically reach an efficiency of more than 30%, according to the researchers.

Solliance and MiaSole reach 21.5% efficiency with flexible perovskite/CIGS tandem cell

Researchers at Solliance, in collaboration with MiaSole Hi-Tech Corp., have designed a flexible solar cell with an impressive power conversion efficiency of 21.5%. The solar cell combines two thin-film solar cell technologies into a 4 terminal tandem solar cell stack: a top flexible semi-transparent perovskite solar cell with a bottom flexible copper indium gallium selenide (CIGS) cell.

Solliance and MiaSole reach 21.5% efficiency with flexible perovskite/CIGS tandem cell

A tandem solar cell, which combines a perovskite and a Cu(In,Ga)Se2 (CIGS) cell, has the potential for high conversion efficiency exceeding single junction solar cell performance thanks to tunable and complementary bandgaps of these individual thin film solar cells. CIGS technology has a proven track record as a high efficiency and stable solar technology, and has entered high volume manufacturing in multi-GW scale around the world. CIGS technology has been successfully used to produce high efficiency flexible and lightweight cells and modules, which address markets where heavy and rigid panels cannot be used. Perovskite solar cells, promise low cost solar technology based on abundant materials. Combining both technologies in a flexible and lightweight package expands the horizon of high performance, flexible, and customizable solar technology.