Article last updated on: Jan 08, 2018

Greatcell Solar provides financial updates

Greatcell logo imageGreatcell Solar has provided an update on matters relating to its current financial position.

Greatcell reports that significant progress has been achieved in recent weeks; An agreement has been reached with the Australian Renewable Energy Agency (ARENA) on variations to a previously signed funding agreement, which will result in a payment of $425,000 AUD (around $307,200 USD) to Greatcell.

Researchers gain new understanding of the movement of atoms in perovskite materials

An international team of researchers led by the U.S. Department of Energy's SLAC National Accelerator Laboratory (that also included, among others, researchers from NIST, the University of Bath, Kings College London and Yonsei University) has gained new understanding of the movement of atoms in perovskite materials and how it affects the functioning of those materials. The results could explain why perovskite solar cells are so efficient and aid the quest to design hot-carrier solar cells, a theorized technology that would almost double the efficiency limits of conventional solar cells by converting more sunlight into usable electrical energy.

Dancing atoms in perovskite materials provide insight into how solar cells work image

Common materials that make up conventional solar cells display a nearly rigid arrangement of atoms with little movement. In hybrid perovskites, however, the arrangements are more flexible and atoms move around more freely, an effect that impacts the performance of the solar cells but has been difficult to measure.

EPFL researchers develop a new way to achieve to high-performance, stable perovskite solar cells

Some of the key challenges for hybrid organic-inorganic perovskite solar cells are their limited stability, scalability, and molecular level engineering. Researchers at the Laboratory of Photonics and Interfaces (LPI) and Laboratory of Magnetic Resonance (LMR) at EPFL show how molecular engineering of multifunctional molecular modulators (MMMs) and using solid-state nuclear magnetic resonance (NMR) to investigate their role in double-cation pure-iodide perovskites can lead to stable, scalable, and efficient perovskite solar cells.

The objective of the team lead by Professor Grätzel (LPI), in collaboration with the group of Professor Lyndon Emsley (LMR) was to tackle the above-mentioned challenges through rational molecular design in conjunction with solid-state NMR, as a unique technique for probing interactions within the perovskite material at the atomic level. The team designed a series of organic molecules equipped with specific functions that act as molecular modulators (MMs), which interact with the perovskite surface through noncovalent interactions, such as hydrogen bonding or metal coordination. While hydrogen bonding can affect the electronic quality of the material, coordination to the metal cation sites could ensure suppression of some of the structural defects, such as under-coordinated metal ions.

HZB researchers achieve improved efficiency for monolithic perovskite/silicon tandem solar cells using textured foil

Researchers at Helmholtz-Zentrum Berlin (HZB) have demonstrated 25.5% efficiency for monolithic perovskite/silicon tandem solar cells using textured foil. In addition, the impact of texture position on performance and energy yield is simulated in their new work.

HZB researchers achieve improved efficiency for monolithic perovskite/silicon tandem solar cells using textured foil imageTandem solar cell device schematics of the experimentally realized architecture and SEM cross section image of the top cell

The research team used a textured light management (LM) foil on the front-side of a tandem solar cell processed on a wafer with planar front-side and textured back-side. Consequently, the PCE of monolithic, 2-terminal perovskite/silicon-heterojunction tandem solar cells was improved from 23.4% to 25.5%. This approach replaced the use of textured silicon wafers, that can be utilized for light management but are typically not compatible with perovskite solution processing.

The U.S. Department of Energy gives out generous funding for solar technology research

The Solar Energy Technologies Office Fiscal Year 2018 (SETO FY2018) funding program addresses the affordability, flexibility, and performance of solar technologies. This program funds early-stage research projects that advance both solar photovoltaic (PV) and concentrating solar-thermal power (CSP) technologies.

Earlier this month, the U.S. Department of Energy announced it would provide $53 million in funding for 53 projects in the SETO FY2018 funding program. Of those projects, 31 will focus on photovoltaics research and development. Within this topic, the office has also selected projects that will develop and test new ways to accelerate the integration of emerging technologies into the solar industry.