Perovskites enable small semiconductor laser that works in visible range at room temperature

An international team of researchers has announced the development of the world's most compact perovskite-based semiconductor laser that works in the visible range at room temperature. According to the authors of the research, the laser is a nanoparticle of only 310 nanometers in size (which is 3,000 times less than a millimeter) that can produce green coherent light at room temperature.

The scientists succeeded in exploiting the green part of the visible band, which was considered problematic for nanolasers. "In the modern field of light-emitting semiconductors, there is the 'green gap' problem," says Sergey Makarov, principal investigator of the article and professor at the Faculty of Physics and Engineering of ITMO University. "The green gap means that the quantum efficiency of conventional semiconductor materials used for light-emitting diodes falls dramatically in the green part of the spectrum. This problem complicates the development of room temperature nanolasers made of conventional semiconductor materials."

Researchers aim for single-mode Nano-lasers from all-inorganic perovskite material

An all-inorganic perovskite micro/nano-structure has been demonstrated by a collaborative team of researchers from Shanghai Institute of Optics and Fine Mechanics of the Chinese Academy of Sciences (CAS), Shanghai Institute of Technical Physics of CAS and Nanjing Xiaozhuang University, that is believed to be a promising candidate for achieving high-performance nano-lasers.

Semiconductor nano-lasers with high spectral purity and stability, namely single-mode nano-lasers, are very desirable in color laser display, on-chip optical communication and computing. To date, most of reported nano-lasers exhibit multi-mode structure resulting from in-homogeneous gain saturation, while the realization of high-quality single-mode laser is very challenging and is largely limited by the cavity structure and the properties of the gain medium.

Israeli-German researchers demonstrate continuous lasing action in devices made from perovskite materials

A collaborative study between Tel Aviv University (TAU) in Israel and Karlsruhe Institute of Technology (KIT) in Germany demonstrates remarkable continuous lasing action in devices made from perovskites.

"In contrast to previous studies around the world, this is the first study to exhibit continuous lasing action, as opposed to pulsed operation," says Prof. Jacob Scheuer of TAU's Department of Physical Electronics, who led the TAU team of researchers. "This family of materials is considered the most promising candidate for a future laser-based industry, because their fabrication is simple, fast and inexpensive compared to current semiconductor materials being used for these purposes. In addition, these materials can support the realization of solid-state lasers emitting in green, necessary for future lighting, displays and projectors," Prof. Scheuer adds. "Current semiconductor lasers emit light only in red and blue."

An international research team develops method for printing nanolasers from perovskites

An international research team has developed a new method of synthesizing miniature light sources. The method is based on a unique laser which produces millions of nanolasers from a perovskite film in a few minutes. Such lasers look like small disks, work at room temperature and have a tunable emission wavelength from 550 to 800 nm. The high speed and good reproducibility of this method make it promising for the industrial production of single nanolasers as well as whole chains.

An international research team develops method for printing nanolasers from perovskitesA scheme of the synthesis and operation and an image of the final nanolasers

Such miniature light sources or nanolasers are required, for example, for producing optical chips that could process information in next-gen devices. However, making such light sources is generally not that easy due to unstable materials, as well as the complex and expensive fabrication methods, which are difficult to control and adjust for industrial production. The scientists from ITMO, the Far Eastern Federal University, Texas University at Dallas, and the Australian National University have found a new way to solve this problem. They have developed a method that may enable the creation of millions of nanolasers from an optically active halide perovskites in a few minutes.

Researchers demonstrate controlled epitaxial growth of all inorganic lead-free halide perovskites

A research team composed of scientists from Michigan State University and University of Michigan has deployed a new approach to growing all inorganic lead-free halide perovskites.

Perovskite quantum wells scheme image

"Epitaxial growth has long since revolutionized the study of many electronic materials including silicon, oxide perovskites, and III-V semiconductors," said Richard Lunt, an Associate Professor at Department of Chemical Engineering and Materials Science, Michigan State University who has supervised the project. "There is very little known about the epitaxial growth of halide perovskites, but these exciting materials hold enormous potential. This has motivated us to explore this entirely new research area."