EPFL team addresses the lead issue of perovskite solar cells

A team of scientists at EPFL has come up with an efficient solution to the lead problem of perovskite solar cells, which involves using a transparent phosphate salt that does not block solar light and hence doesn't affect performance.

Removing the lead hazard from perovskite solar cells image

In case the solar panel fails, the phosphate salt immediately reacts with lead to produce a water-insoluble compound that cannot leach out to the soil, and which can be recycled.

Researchers develop Sn-based perovskite material with a wide visible-light absorption band

Semiconductors that can exploit the omnipresent visible spectrum of light for different technological applications are highly sought after, but such semiconductors are often dexpensive and toxic. A group of scientists from Tokyo Institute of Technology and Kyushu University have collaborated to develop a low-cost and non-toxic narrow-gap semiconductor material with potential 'light-based' or photofunctional applications.

A cheaper perovskite-based semiconductor material that is free of toxic lead and can absorb a wide range of visible light with potential photofunctional applications image

Tin-containing oxide semiconductors are cheaper than most semiconductor materials, but their photofunctional applications are constrained by a wide optical band gap. The team of scientists, led by Dr. Kazuhiko Maeda, Associate Professor at the Department of Chemistry, Tokyo Institute of Technology, developed a perovskite-based semiconductor material that is free of toxic lead and can absorb a wide range of visible light.

Researchers use hydroxyapatite to combat lead release from perovskite solar cells

Scientists at The University of Manchester have developed a way to increase the environmental safety of perovskite solar cells by eliminating the lead release from broken cells. Using a bioinspired mineral called hydroxyapatite, a major constituent of human bone, they have created a ‘failsafe’ which captures the lead ions in an inorganic matrix. As a result, if cells are damaged, toxins are stored in an inert mineral, rather than released in the environment.

Unlike silicon solar cells, perovskite solar cells can be mass produced through roll-to-roll processing. Additionally, they are light and can be used in non-traditional settings such as windows and contoured roofs. However, up until now, application has been impacted by potential environmental risks. Perovskite solar cells contain lead, a cumulative toxin, and if the cells get damaged, lead ions may leak.

KAIST and Seoul National University develop high-performance material for Perovskite-based LEDs

A research team, led by Professors Byungsoo Bae at KAIST and Taewoo Lee at Seoul National University, has developed a new perovskite light-emitting diode (PeLED) display material.

PeLED is a type of LED that uses perovskite as a light-emitting material. Currently, the production cost is lower than that of organic light emitting diodes (OLEDs) and quantum dot light emitting diodes (QLEDs), and it has the advantage of enabling sophisticated color realization.