Researchers at Huazhong University of Science and Technology (HUST) in China, University of Toledo in the U.S, Monash University in Australia, Jilin University and Tsinghua University in China, the Dalian Institute in China and the University of Toronto in Canada have examined a lead-free double perovskite that exhibited stable and efficient white light emission. In its mechanism of action, the material produced self-trapped excitons (STEs) due to Jahn-Teller distortion of the AgCl6 octahedron in the excited state of the complex, observed when investigating exciton-phonon coupling in the crystal lattice.
The research team stated that a fifth of global electricity consumption is based on lighting, and efficient and stable white-light emission with single materials is ideal for such applications. Photon emission that covers the entire visible spectrum is, however, difficult to attain with a single material. Metal halide perovskites, for instance, have outstanding emission properties but contain lead, and so yield unsatisfactory stability. The perovskite in this study is, therefore, lead-free.