Sustainable lead management system could solve toxicity issue and promote commercialization of PSCs

Scientists from the Korea Institute of Machinery and Materials, Kyungpook National University, Sungkyunkwan University, Sejong University and Yonsei University in Korea, in collaboration with Uppsala University in Sweden, Imperial College London and National Renewable Energy Laboratory in the U.S, recently devised a way to sustainably collect pollutants secreted from PSCs without sacrificing the panel itself. Using this new approach, the scientists were able to safely recycle 99.7% of lead in their samples.

Multi-step adsorption process for lead from PSCs image

In the study describing their work, the researchers explain that they're not the first to attempt to tackle this issue, but that previous approaches to adsorbing lead have been limited by the number of naturally occurring lead solvents.

Tin halide perovskite films enable more efficient and stable lead-free perovskite solar cells

An international collaboration led by Antonio Abate, HZB, and Zhao-Kui Wang, Institute of Functional Nano & Soft Materials (FUNSOM), Soochow University, China, has achieved a breakthrough that opens up a path to non-toxic perovskite-based solar cells that provides stable performance over a long period.

They use tin instead of lead but have created a two-dimensional structure by inserting organic groups within the material, which leads to so-called 2D Ruddlesden-Popper phases.

X-rays reveal in situ crystal growth of lead-free perovskite solar panel materials

University of Groningen scientists are investigating in situ how lead-free perovskite crystals form and how the crystal structure affects the functioning of the solar cells, as part of their quest to find alternatives to lead-based perovskites.

The best results in solar cells have been obtained using perovskites with lead as the central cation. As this metal is toxic, tin-based alternatives have been developed, for example, formamidinium tin iodide (FASnI3). This is a promising material; however, it lacks the stability of some of the lead-based materials. Attempts have been made to mix the 3D FASnI3 crystals with layered materials, containing the organic cation phenylethylammonium (PEA). "My colleague, Professor Maria Loi, and her research team showed that adding a small amount of this PEA produces a more stable and efficient material," says Assistant Professor Giuseppe Portale. "However, adding a lot of it reduces the photovoltaic efficiency".

Peppermint oil and walnut aroma to enable HT material that prevents lead leakage in perovskite solar cells

Researchers at the Pohang University of Science & Technology (POSTECH) have developed eco-friendly-solvent processable hole transport polymers by using peppermint oil and walnut aroma food additives and the polymer can prevent lead leakage.

The POSTECH research team consisted of Prof. Taiho Park and Junwoo Lee, that developed Alkoxy-PTEG - hole transport polymers that could be dissolved in peppermint oil, by applying ethylene glycol side chains when producing perovskite solar cells. Also, the team confirmed that this polymer captured leaking lead in aging perovskite solar cells.

New lead sequestration technique could make for safer lead-based perovskite solar cells

Researchers at Northern Illinois University and the U.S. Department of Energy’s (DOE) National Renewable Energy Laboratory (NREL) in Colorado have reported on a potential breakthrough in the development of hybrid perovskite solar cells.

Led by Tao Xu of NIU and Kai Zhu of NREL, the scientists have developed a technique to sequester the lead used to make perovskite solar cells and minimize potential toxic leakage by applying lead-absorbing films to the front and back of the solar cell.