NREL team highlights the potential of perovskites for renewable hydrogen production

A recent analysis carried out by scientists at the National Renewable Energy Laboratory (NREL) have found that perovskite materials could play an important role in a process to produce hydrogen in a renewable manner.

NREL Scientists Advance Renewable Hydrogen Production Method image

The NREL scientists analyzed an emerging water-splitting technology called solar thermochemical hydrogen (STCH) production, which can be potentially more energy efficient than producing hydrogen via the commonly used electrolysis method. Electrolysis needs electricity to split water into hydrogen and oxygen. STCH relies on a two-step chemical process in which metal oxides are exposed to temperatures greater than 1,400 degrees Celsius and then re-oxidized with steam at lower temperatures to produce hydrogen.

Researchers present guidelines for testing radiation-tolerating properties of perovskites for use in space

A collaborative research effort involving scientists from the US National Renewable Energy Laboratory (NREL) and other collaborators, has examined how well perovskite technology might work in the space, such as for powering satellites. The research group has presented guidelines to test the radiation-tolerating properties of perovskites intended for use in space.

“Radiation is not really a concern on Earth, but becomes increasingly intense as we move to higher and higher altitudes,” commented Ahmad Kirmani, a postdoctoral researcher at NREL and lead author of the new study.

Researchers develop lead-absorbing tapes for sustainable perovskite solar cells

Scientists at the National Renewable Energy Laboratory (NREL) and Northern Illinois University (NIU) have developed a way to prevent lead from escaping damaged perovskite solar cells. This could go a long way in addressing concerns about potential lead toxicity.

New film is intended to keep lead from escaping damaged perovskite solar cells imageImage by NREL, from Phys.org

The light-absorbing layer in perovskite solar cells contains a small amount of lead. Simply encapsulating solar cells does not stop lead from leaking if the device is damaged. Instead, chemical absorption may hold the key. The researchers report being able to capture more than 99.9% of the leakage.

The DoE awards $1.25 million to perovskite research projects, issues an RFI for perovskite efficiency targets

The US Department of Energy (DoE) awarded nearly $40 Million for grid-decarbonizing solar technologies projects. The DoE awarded the funds to 40 research projects, several of which are perovskite related. We'll list the perovskite projects (which were awarded a total of $1.25 million) below.

The DoE also issued a request for information (RFI) to gather input on efficiency, stability and replicability performance targets for perovskite photovoltaic devices that could be utilized to demonstrate technical and commercial readiness for future funding programs.

NREL and NASA test perovskite solar cells in space

Researchers at NREL, working with teams from NASA, are testing ways to bring production costs of solar cells down and transforming how PV technologies could work in space as well.

The latest test will evaluate the potential use of perovskite solar cells in space and assess the durability of materials used in those cells. NASA's Dr. Kaitlyn VanSant worked with Ahmad Kirmani, Joey Luther, Severin Habisreutinger, Rosie Bramante, Dave Ostrowski, Brian Wieliczka, and Bill Nemeth at NREL to prepare the perovskite cells and materials. Eight of these samples are scheduled to launch to the space station in August and another set of 25 samples will be launched in the spring of 2022. The samples, each of which are a square inch in size, are part of the Materials International Space Station Experiment (MISSE) program and will be fastened to the outside of the orbiting platform.