NREL

Researchers address the thermal instability of perovskite solar cells by developing a layer of nickel oxide nanoparticles, topped by a SAM

In an effort to tackle the challenge of perovskite solar cells' thermal instability, researchers at City University of Hong Kong (CityU), National Renewable Energy Laboratory (NREL) and Huazhong University of Science and Technology have developed a unique type of self-assembled monolayer, or SAM for short, and anchored it on a nickel oxide nanoparticles surface as a charge extraction layer. This method dramatically enhanced the thermal robustness of perovskite solar cells, according to Professor Zhu Zonglong of the Department of Chemistry at CityU.

“By introducing a thermally robust charge extraction layer, our improved cells retain over 90% of their efficiency, boasting an impressive efficiency rate of 25.6%, even after operated under high temperatures, around (65℃) for over 1,000 hours. This is a milestone achievement,” said Professor Zhu.

Read the full story Posted: Oct 21,2023

Researchers identify the best combination of stressors for testing perovskite solar cells

Researchers at the U.S. Department of Energy’s National Renewable Energy Laboratory (NREL) and the University of Toledo have found that perovskite solar cells should be subjected to a combination of stress tests simultaneously to best predict how they will function outdoors.

The team used a state-of-the-art p-i-n PSC stack (with PCE up to ~25.5%) to show that indoor accelerated stability tests can predict 6-month outdoor aging tests. Device degradation rates under illumination and at elevated temperatures are most instructive for understanding outdoor device reliability. The team also found that the indium tin oxide (ITO)/self-assembled monolayer (SAM)-based hole transport layer (HTL)/perovskite interface most strongly affects the device operation stability. Improving the ion-blocking properties of the SAM HTL increases averaged device operational stability at 50°C–85°C by a factor of ~2.8, reaching over 1000 h at 85°C and to near 8200 h at 50°C with a projected 20% degradation, which is among the best to date for high-efficiency p-i-n PSCs.

Read the full story Posted: Sep 13,2023

Verde Technologies partners with NREL to commercialize perovskite solar cells

Verde Technologies, a perovskite-focused thin-film solar company, has announced a new exclusive partnership with the U.S. Department of Energy’s National Renewable Energy Laboratory (NREL) and Northern Illinois University (NIU) to work collaboratively on the commercialization of perovskite solar cells. 

By combining NREL's and NIU’s expertise with Verde's cutting-edge manufacturing techniques, this collaboration aims to unlock the potential of efficient, safe, low-cost perovskite solar panels at an unprecedented scale.

Read the full story Posted: Aug 04,2023

Researchers use perovskites and electrocatalysts to create a device that turns sunlight into hydrogen

Researchers from Rice University, National Renewable Energy Laboratory (NREL), Lawrence Berkeley National Laboratory, CNRS and HZB have designed a conductive adhesive-barrier (CAB) that translates >99% of photoelectric power to chemical reactions. The device combines halide perovskites with electrocatalysts and could serve as a platform for a wide range of chemical reactions that use solar-harvested electricity to convert feedstocks into fuels.

The CAB enables halide perovskite-based photoelectrochemical cells with two different architectures that exhibit record solar-to-hydrogen (STH) efficiencies. 

Read the full story Posted: Jul 24,2023

Researchers design highly efficient bifacial single-junction perovskite solar cells

Researchers from the University of Toledo, NREL and the University of Colorado Boulder have designed highly efficient, bifacial, single-junction perovskite solar cells based on a p-i-n (or inverted) architecture. In this work, the team showed that bifacial perovskite photovoltaics technology has the potential to outperform its monofacial counterparts.

The team used optical and electrical modeling to guide the optimization of the transparent conducting rear electrode and perovskite absorber layer using a p-i-n device architecture, achieving a high bifaciality of about 91%–93% and a high front-side illumination PCE of over 23%. Under concurrent bifacial measurement conditions, the equivalent, stabilized bifacial power output densities were 26.9, 28.5, and 30.1 mW/cm2 under albedos of 0.2, 0.3, and 0.5, respectively. 

Read the full story Posted: Jul 20,2023

Researchers suggest substitute for gold to make perovskite solar cells more affordable

Researchers from Northern Illinois University, National Renewable Energy Laboratory (NREL), Northwestern University and Argonne National Laboratory have reported a bilayer back electrode configuration consisting of an Ni-doped natural graphite layer with a fusible Bi-In alloy. This back electrode can be deposited in a vacuum-free approach and enables perovskite solar cells (PSCs) with a power conversion efficiency of 21.0%. These inexpensive materials and facile ambient fabrication techniques can help provide an appealing solution to low-cost PSC industrialization.

A thin layer of gold or silver can help improve the efficiency of perovskite solar cells, but the researchers have found a less expensive material that will enable commercialization of the technology without exorbitant cost.  “A layer of gold in a solar panel or even a layer of silver is probably too expensive,” said Kai Zhu, a senior scientist in the Chemistry and Nanoscience Center at the U.S. Department of Energy’s National Renewable Energy Laboratory (NREL). “It would make the solar panel not affordable for most people.”

Read the full story Posted: Jun 26,2023

Researchers report triple junction perovskite solar cell with 24.3% efficiency

Researchers from the University of Toronto in Canada, Northwestern University, The University of Toledo and University of North Carolina at Chapel Hill in the United States, King Abdullah University of Science and Technology (KAUST) in Saudi Arabia, Yunnan University in China, Ecole Polytechnique Fedérale de Lausanne (EPFL) in Switzerland and University of Warwick in the UK have developed a triple-junction perovskite solar cell with a record efficiency of 24.3% with an open-circuity voltage of 3.21 V. 

The NREL has certified the cell’s quasi-steady-state efficiency as 23.3%, which the team stated is the first reported certified efficiency for perovskite-based triple-junction solar cells. They added that triple-junction perovskite solar cells have so far demonstrated a maximum efficiency of around 20%.

Read the full story Posted: Apr 09,2023

Researchers simplify the process of manufacturing perovskite solar cells by coating multiple layers at once

Researchers at the National Renewable Energy Laboratory (NREL), City University of Hong Kong, École Polytechnique Fédérale de Lausanne (EPFL), University of Kentucky, University of Colorado, University of Toledo and Brown University have developed a concept  that simplifies the process of manufacturing perovskite solar cells, which could accelerate their path toward commercialization.

Perovskite solar cells are made by sequentially depositing various layers onto a conductive glass substrate, requiring multiple coatings to create the necessary full device structure. The new technique eliminates or combines some of those steps, thereby simplifying the manufacturing process, which could lead to lower manufacturing costs.

Read the full story Posted: Mar 24,2023

Researchers show that perovskite-based thermochromic windows reduce energy load and carbon emission in buildings

Researchers from NREL, University of Wisconsin—Stout and Swift Solar have reported perovskite-based thermochromic windows that reduce energy load and carbon emission in buildings. The team calculated and fabricated a perovskite-based technology with excellent transition temperatures for building energy savings. 

The use of thermochromic windows in office buildings improves energy efficiency across all climate zones in the United States by modulating the temperature inside, leading to a massive savings, according to the research effort led by the U.S. Department of Energy’s National Renewable Energy Laboratory (NREL).

Read the full story Posted: Feb 12,2023

Researchers develop metal oxide barrier coating to protect perovskite photovoltaics from terrestrial and space stressors

Researchers from the US Department of Energy’s National Renewable Energy Laboratory (NREL), University of North Texas and University of Oklahoma have demonstrated that an ultrathin layer of  silicon oxide layer can harden perovskite photovoltaics to protect it from critical stressors in space and on Earth. 

Space has its own unique environmental challenges for solar cells, perovskite ones included. PSCs have to be resilient against such challenges as “radiation, atomic oxygen, vacuum, and high-temperature operation,” according to the study’s abstract.

Read the full story Posted: Jan 27,2023