Researchers devise Mie-resonant ETL for highly efficient perovskite solar cells

Researchers from Russia-based ITMO University and the University of Rome Tor Vergata have developed a paste made of titanium dioxide (TiO2) and resonant silicon nanoparticles, claimed to improve light absorption in perovskite solar cells based on methylammonium lead iodide (MAPbI3).

The scientists created a mesoporous electron transport layer based on optically resonant silicon nanoparticles which were then incorporated into TiO2 paste. “Such particles serve as nanoantennae – they catch light and it resonates inside them. And the longer light stays in the photoactive layer, the more of it is absorbed by the material,” said Sergey Makarov, professor at ITMO’s school of physics and engineering.

Ascent Solar enters agreement with TubeSolar to jointly develop high efficiency CIGS-Perovskite tandem PV cells

Ascent Solar Technologies, a developer and manufacturer of flexible thin-film photovoltaic solutions, has announced the signing of a Joint Development Agreement with German agrivoltaic thin-film solar tube maker, TubeSolar, to pursue the Agricultural-photovoltaics/Agrivoltaics (APV) market.

It was indicated that this JDA is a multi-million-dollar, long-term supply agreement, forming a strategic partnership between Ascent Solar and TubeSolar. This JDA includes (i) long-term supplier of customized PV (“PV Foils”) for TubeSolar, (ii) Non-Recurring Engineering Fee (“NRE Fee”) of up to $4 Million, payable by TubeSolar to Ascent Solar in three parts, (iii) establishment of a joint venture entity to develop a new manufacturing facility located in Germany (“JV FAB”), (iv) the Company will benefit from milestone payments by TubeSolar of up to $13.5 Million, and (v) joint development efforts in next generation, high efficiency CIGS-Perovskite tandem PV cells.

ITMO team develops perovskite NCs with enhanced water stability for bio-imaging applications

ITMO scientists have created perovskite nanocrystals that preserve their unique optical properties in water and biological fluids. This material could offer new opportunities for the optical visualization of biological objects and promote the investigation of internal organs in living organisms and monitoring of diseases.

ITMO Scientists Create Water-Resistant Perovskite Nanocrystals for Studying Living Cells image

Nanomaterials based on halide perovskites hold great potential for use in bioimaging: perovskite nanoparticles can be potentially applied for visualization purposes in order to study biological processes in cells and living organisms. However, the main limitation that prevents their application as luminescent markers is their instability in aqueous solutions.

Researchers use UV light to modulate oxide ion transport in a perovskite crystal at room temperature

Researchers from Japan's Tsukuba University have found that ultraviolet light can modulate oxide ion transport in a perovskite crystal at room temperature.

The performance of battery and fuel cell electrolytes depends on the motions of electrons and ions within the electrolyte. Modulating the motion of oxide ions within the electrolyte could enhance future battery and fuel cell functionality by increasing the efficiency of the energy storage and output. Use of light to modulate the motions of ions - which expands the source of possible energy inputs - has only been demonstrated thus far for small ions such as protons. Overcoming this limitation of attainable ion motions is something the researchers in this study aimed to address.

Researchers develop new vacuum deposition process that could reduce costs and allow excellent film quality

Researchers from Italy's CNR-IMM, Università del Salento, Università degli Studi di Catania and University of Bari ‘Aldo Moro’ have developed an innovative vacuum deposition method to prepare thin CH3NH3PbI3 (MAPbI3) layers for semitransparent perovskite solar cells.

Three physical deposition methods imageSchematic of three physical deposition methods. Image from article

This new (patent pending) method to deposit thin perovskite layers for PSC under low vacuum conditions is called LV-PSE (low vacuum proximity space effusion) and can reportedly reduce costs and waste.