New "demonstrator project" at EPFL-Sion Campus will test perovskite solar tech in real life conditions

The EPFL launched a new project, supported by the Valais State Government with 5 million Swiss Francs, to realize a "demonstrator project" at EPFL-Sion Campus Energypolis.

Sized at the canton or district level, these installations will enable the testing of technologies developed in the laboratories of EPFL Valais-Wallis in real conditions, with the collaboration of local partners and the HES-SO Valais-Wallis.

Quantum Solutions demonstrates its green perovskite QD film for LCD color conversion

UK-based Quantum Solutions published this video below that demonstrates its latest perovskite QD film for LCD color conversion:

Quantum Solutions now offers its QDot SharpGreen Perovskite QDs Film, which is a polymer composite with embedded QDot SharpGreen Perovskite QDs. It is designed to be used in LCD backlighting units and sensor devices for X-rays and UV lights. The material has green emission 520-535 nm (depending on the concentration), high PLQY (up to 80-100 %) and narrow FWHM (< 20-22 nm). The company says that the films retain > 70-80 % of initial photoluminescence within 1000 hours of exposing by heat (85 °C and blue light 10 mW/cm2 exposure) and high relative humidity (90 % RH at 60 °C).

HZB team paves the way for improved ink design to enable industrial-scale manufacturing of perovskite thin films

An HZB team at BESSY II recently analyzed the crystallization processes within optimized inks used for the production of metal-halide perovskite thin-films for photovoltaic modules . A model has also been developed to assess the kinetics of the crystallization processes for different solvent mixtures. The results could be of high importance for the further development of perovskite inks for industrial-scale deposition processes of these semiconductors.

Schematic representation of the experiment in the article image

For the production of larger area photovoltaic modules, the team of Dr. Eva Unger develops printing and coating processes in which the perovskite semiconductor is processed from inks containing the precursors dissolved in solvents. The composition of the ink determines the material formation mechanism with the solvent affecting the process by its rheological properties, evaporation rate and participation in intermediate phases. "Our research question in this project was: How can we rationalize the difference in crystallization kinetics when using different solvents," explains Unger, who heads the Young Investigator Group Hybrid Materials Formation and Scaling.

Magnetic lead-free double perovskite could be useful for spintronics devices

An international researchers team recently found that a new “double perovskite” material could become a more environmentally friendly platform for spintronics devices thanks to its lead-free nature. While the material in its current form is only magnetic below 30 K – too low for practical applications – developers at Linköping University in Sweden, together with colleagues in the US, the Czech Republic, Japan, Australia and China, say that their preliminary experiments are a promising step towards making rapid and energy-efficient information storage devices from this novel optoelectronic material.

Recently, researchers discovered that lead halide perovskites display interesting spin properties thanks to lead’s strong spin-orbit coupling. This coupling links the motion of an electron to its quantum spin, and its strength determines how much the intrinsic spin of an electron will interact with the magnetic field induced as the electron moves through the material. Such a coupling is therefore important not only for the magnetic properties of a material, but also for the performance of any spintronics devices.

POTECH team designed highly efficient and stable PSC materials using an organic spacer molecular additive

Researchers at POSTECH recently developed an organic spacer molecular additive that can improve both the photoelectric efficiency and stability of perovskites.

The POSTECH team, led by Professor Kilwon Cho and Ph.D. candidate Sungwon Song of the Department of Chemical Engineering, succeeded in fabricating perovskite solar cells that are highly efficient and stable by drastically reducing the concentration of internal defects in the crystals as well as increasing the moisture resistance of perovskite by introducing a new organic spacer molecule additive in the perovskite crystal.