New approach to stabilize perovskite material may yield improved solar cells

An international research team, including scientists from Shanghai Jiao Tong University, the Ecole Polytechnique Fédérale de Lausanne (EPFL), and the Okinawa Institute of Science and Technology Graduate University (OIST), has found a stable that efficiently creates electricity and could be extremely beneficial for perovskite solar cells.

The researchers show how the material CsPbI3, an inorganic perovskite, has been stabilized in a new configuration capable of reaching high conversion efficiencies. This configuration is noteworthy as stabilizing these materials has historically been a challenge.

Indian government invites perovskite solar research proposals

India’s Ministry of New and Renewable Energy (MNRE) has invited project proposals from industrial players, startups and R&D labs for high-efficiency perovskite solar cells, solar panel recycling, hybrid inverters and new applications that combine solar and storage, among others.

Specific R&D areas include the processes for segregating different components of end-of-life PV modules, as well as the recycling of glass. Research will also focus on grid-tied inverters that are suitable for the Indian grid and the country’s environmental conditions, in addition to hybrid inverters with capacities of up to 500 KVA, electronics for HT grid stabilization that incorporate storage batteries, and high-efficiency perovskite solar cells on single- and multicrystalline silicon substrates.

Tokyo Tech team discovers a way to improve perovskite-based light-emitting diodes

Researchers at the Tokyo Institute of Technology (Tokyo Tech) have designed a new strategy to make efficient perovskite-based LEDs with improved brightness by leveraging the quantum confinement effect.

Photoluminescence and electroluminsecence in low-dimensional and 3D perovskite-based devices image(A) Photoluminescence and (B) electroluminsecence in low-dimensional and 3D perovskite-based devices

Devices that emit light when an electric current is applied, are referred to as electroluminescent devices, which have become orders of magnitude more efficient than the traditional incandescent light bulb. Light-emitting diodes (LEDs) make for the most notable and prevalent category of these devices. Many additional types of LEDs also exist.

Oxford PV makes strides towards PSC commercialization with new $20.5 million PV production line

After forming a strategic partnership in March 2019 between Meyer Burger and Oxford Photovoltaics, Meyer Burger has announced that it has received its first order from Oxford Photovoltaics (Oxford PV), for a heterojunction (HJT) manufacturing line including necessary adaptions enabling the upgrade to perovskite-on-HJT tandem technology.

Oxford PV hits new efficiency record image

The order for the upgrade itself will reportedly follow later this year. The current contract volume is about CHF 20 million and provides Oxford PV with an initial manufacturing capacity of 100 MW with plans to expand tandem solar cell production capacity to 250 MW by the end of 2020.

Perovskites may help improve detectors for nuclear security

Researchers from the University of Florida and Pacific Northwest National Laboratory set out to improve global nuclear security by enhancing radiation detectors, and discovered, after evaluating a diverse list of over 60 candidates for alternative semiconductor compounds, that a hybrid organic-inorganic perovskite has the highest potential to succeed.

Perovskite sensors can improve equipment used for detecting and identifying radioactive materials imageBetter sensors can improve equipment used for detecting and identifying radioactive materials. (Image credit: Pacific Northwest National Laboratory)

The scientists reported that the identification of better sensor materials and the development of smarter algorithms to process detector signals are essential to enhance radiation detectors. Paul Johns, Physicist, University of Florida, said: "The end users of radiation detectors don’t necessarily have a background in physics that allows them to make decisions based on the signals that come in. The algorithms used to energy-stabilize and identify radioactive isotopes from a gamma ray spectrum are therefore key to making detectors useful and reliable".