Adding “self-healing” polymer may prevent lead leakage

Researchers from the Okinawa Institute of Science and Technology Graduate University (OIST) have found that a protective layer of epoxy resin helps prevent the leakage of pollutants from perovskite solar cells (PSCs). Adding a “self-healing” polymer to the top of a PSC can drastically reduce how much lead it discharges into the environment. This may give a boost to prospects for commercializing the technology.

A protective layer of epoxy resin helps prevent the leakage of pollutants from perovskite solar cells

“Although PSCs are efficient at converting sunlight into electricity at an affordable cost, the fact that they contain lead raises considerable environmental concern,” explains Professor Yabing Qi, head of the Energy Materials and Surface Sciences Unit, who led the study. "While so-called ‘lead-free’ technology is worth exploring, it has not yet achieved efficiency and stability comparable to lead-based approaches. Finding ways of using lead in PSCs while keeping it from leaking into the environment, therefore, is a crucial step for commercialization.”

Saule Technologies on its way to launching prototype production line in Q4 2019

Saule Technologies has announced that it has reached the point of technology development to be able to print its flexible, lightweight, semi-transparent, single junction solar modules with a consistent 10% efficiency. This performance, according to the Company, already enables BIPV and IoT applications in an economically viable manner.

Saule Technologies heads toward launching prototype production line image

By the end of March, Saule Technologies has also reached as high as 17.6% efficiency at the cell level (measured by an independent research institute). The durability has been significantly improved as well, with the latest stability tests indicating multiple years of flawless operation under accelerated ageing tests.

New technology produces perovskite quantum dots with excellent color purity and stability

A Taiwan-based research team has developed spray synthesis technology for producing perovskite quantum dots (PQDs). The technology reportedly features a photoluminescence quantum yield rate of nearly 100% and high color purity and stability of PQDs, according to Ministry of Science and Technology (MOST), which sponsors the R&D project.

Using spray synthesis technology, nanometer-sized perovskite crystals are separated from perovskite precursors in solvent and then the crystals are centrifuged to extract PQDs of same sizes, said Lin Hao-wu, which leads the team from the Department of Material Science and Engineering, National Tsing Hua University (NTHU).

Israeli-German researchers demonstrate continuous lasing action in devices made from perovskite materials

A collaborative study between Tel Aviv University (TAU) in Israel and Karlsruhe Institute of Technology (KIT) in Germany demonstrates remarkable continuous lasing action in devices made from perovskites.

"In contrast to previous studies around the world, this is the first study to exhibit continuous lasing action, as opposed to pulsed operation," says Prof. Jacob Scheuer of TAU's Department of Physical Electronics, who led the TAU team of researchers. "This family of materials is considered the most promising candidate for a future laser-based industry, because their fabrication is simple, fast and inexpensive compared to current semiconductor materials being used for these purposes. In addition, these materials can support the realization of solid-state lasers emitting in green, necessary for future lighting, displays and projectors," Prof. Scheuer adds. "Current semiconductor lasers emit light only in red and blue."

Perovskite membrane enables process that creates chemicals from carbon dioxide

Researchers at the Fraunhofer Institute for Interfacial Engineering and Biotechnology and the University of Stuttgart are aiming to use carbon dioxide as a raw material for the production of chemicals, using a process based on a new perovskite capillary membrane.

The perovskite capillaries with a diameter of 2 mm and a wall thickness of 150 µm imageThe perovskite capillaries with a diameter of 2 mm and a wall thickness of 150 µm. Image by Fraunhofer

In the project “PiCK – Plasma-Induced CO2 Conversion for the Storage of Renewable Energies”, the researchers have been researching for two years a new approach that uses excess electricity from regenerative sources and combines plasma with membrane technology. The process splits CO2 into oxygen and the chemical base material carbon monoxide. The separation of oxygen is based on a perovskite capillary membrane, which is CO2-stable and permeable to oxygen at 1000°C.