Perovskite applications

Flexible perovskite solar modules with record-breaking performance developed as part of APOLO project

The CEA at INES has reported the design of flexible perovskite solar modules with a surface area of 11.6 cm2 and a power conversion efficiency of 18.9% (stabilized efficiency > 18.5%). This performance is said to be a world record for flexible perovskite modules over 10 cm2.

Image
Perovskite modules before and after flexible encapsulation

Perovskite-based modules before and after flexible encapsulation. Image credit: CEA

For some applications, the use of flexible substrates may be attractive for single-junction perovskite technology as it opens the way to high-speed, low-temperature printing processes. Thus, it becomes possible to use low cost substrates whereas inorganic flexible technologies, such as CIGS, require higher temperature processes and substrates that are more expensive. Many teams around the world are trying to meet the challenges of making larger area devices with sufficient stability for real-life applications. This is one of the tasks standing before partners of the European APOLO project, as part of which these results were obtained.

Read the full story Posted: Jun 23,2022

Researchers develop novel accelerated aging testing method and a perovskite solar cell with a commercially viable lifetime

Researchers from Princeton University in the U.S and Sweden's Linköping University have reported the development of "the first perovskite solar cell with a commercially viable lifetime". The team estimates their device can perform above industry standards for around 30 years, far more than the 20 years used as a threshold for viability for solar cells.

Not only is the device said to be highly durable, but it also meets common efficiency standards. It is the first of its kind to rival the performance of silicon-based cells, which have been market leaders for decades. 

Read the full story Posted: Jun 17,2022

Researchers expose perovskites to real-world conditions to gain insights into degradation mechanisms

Researchers at Florida State University (FSU), in collaboration with ones from Argonne National Laboratory, have examined what happens when a halide perovskite faces real-world conditions, as opposed to pristine conditions of a chemistry lab.

They found that stressing halide perovskites with light and electric fields can create changes in the basic properties of the material and distort the lattice structure that is crucial to keeping this material stable.

Read the full story Posted: Jun 15,2022

Quantum Solutions starts offering evaluation samples of next-gen perovskite-QD based X-Ray Scintillators

UK-based Quantum Solutions started to ship evaluation samples of its next-gen perovskite quantum dots (pQD) X-Ray Scintillators. The company says that these scintillators offer very high sensitivity, high light output, high resolution, low afterglow and can be processed on large areas.

Image
Perovskite quantum dots x-ray scintillator slide (QS)

Quantum Solutions started developing these materials in 2020, and already managed to increase the light output (brightness) 10 times over. The company says that this is due to the unique perovskite structure that allows to tune the properties by composition, particle sizes/shapes, ligands, etc. The product already matches the performance of commercial CsI(Tl) and GADOX scintillators. The company is working with key customers in the medical field and non-destructive testing field, and are continuing to develop and customize the product.

Read the full story Posted: Jun 13,2022

Researchers design novel passivation approach to achieve perovskite solar cells with efficiency of over 23%

Researchers from The Australian National University, Flinders University, University of New South Wales and The University of Sydney have developed a perovskite solar cell with a novel passivation process based on the use of guanidinium (Gua) and octylammonium (Oa) spacer cations.

Image
The device structure and the surface incorporation of GuaBr, OABr, and their mixture. Image from RRL Solar

 A schematic showing the device structure and the surface incorporation of GuaBr, OABr, and their mixture. Image from RL Solar

The team claims that guanidinium salts can improve the performance of the perovskite film, as guanidinium ions are capable of penetrating into the bulk of the perovskite material and localizing at the grain boundaries (GBs).

Read the full story Posted: Jun 13,2022

DOE awards funding for 3 perovskite-related PV projects

The U.S. Department of Energy (DoE) has selected 19 projects for which to grant a total funding of $6 million, to pursue innovative, targeted, early-stage ideas in solar energy research and development. The projects were selected through the Solar Energy Technologies Office (SETO) Small Innovative Projects in Solar (SIPS) 2022 Funding Program.

Projects were awarded in two solar energy research areas: PV and concentrating solar-thermal power (see CSP winners here). PV projects will improve power conversion efficiency, energy output, reuse and recycling processes, service lifetime, and manufacturability of PV technologies. Of the 19 selected project, 3 were perovskite-related.

Read the full story Posted: Jun 11,2022

Hyundai Motor to work with UNIST researchers to develop perovskite solar cell for vehicle solar roof

Recent reports claim that South Korea's Hyundai auto group has teamed up with a research team at Ulsan National Institute of Science and Technology (UNIST) to develop new perovskite solar cells that can charge vehicles while they are under the sun. 

Hyundai Motor already released solar roofs with silicon solar panels, but their acceptance has been slow without improvements in weight and efficiency, as silicon solar cells are quite heavy and have technical limitations in improving efficiency. In a recent ceremony, the Ulsan National Institute of Science and Technology (UNIST) opened a joint laboratory with Hyundai to develop high-efficiency, large-area perovskite-silicon tandem cells and apply them to solar roofs. The joint laboratory will operate for three years until May 2025.

Read the full story Posted: Jun 10,2022

Researchers create perovskite quantum dot microarrays for improved displays

Researchers from the Beijing Institute of Technology and MIIT Key Laboratory for Low Dimensional Quantum Structure and Devices have developed perovskite quantum dots microarrays with strong potential for quantum dots color conversion (QDCC) applications, including photonics integration, micro-LEDs, and near-field displays.

Image
Perovskite quantum dots microarrays with strong potential for QDCC applications, including photonics integration, micro-LEDs, and near-field displays. Image from Nano Research

QDCC is considered a versatile way to achieve full-color organic light-emitting diodes and micro-light-emitting diodes displays. QDCC provides a wide range of color performance and easy integration. However, conventional QDCC pixels, fabricated by the commonly used method of inkjet printing, tend to be too thin to achieve efficient color conversion. The conventional combination of quantum dots and coffee-ring effects or puddle of particle-laden liquid that occur after evaporation, lowers the light conversion efficiency and emission uniformity in quantum dot microarrays. This also contributes to blue-light leakage or optical crosstalk, where unwanted coupling occurs between signal paths. 

Read the full story Posted: Jun 10,2022

Lead-free perovskites assist in creating a ‘fabric’ that turns body movement into electricity

Scientists at Nanyang Technological University in Singapore (NTU) and Tsinghua University have developed a stretchable and waterproof ‘fabric’ that turns energy generated from body movements into electrical energy. The fabric contains a polymer that, when pressed or squeezed, converts mechanical stress into electrical energy. It is also made with stretchable spandex as a base layer and integrated with a rubber-like material to keep it strong, flexible, and waterproof.

Image
The fabric-based energy harvesting prototype (right) and the stretchable electrode (left)

The team showed that tapping on a 3cm by 4cm piece of the new fabric generated enough electrical energy to light up 100 LEDs. The fabric can withstand washing, folding and crumpling without performance degradation, and it could maintain stable electrical output for up to five months, demonstrating its potential for use as a smart textile and wearable power source.

Read the full story Posted: Jun 07,2022

Researchers improve tech for efficient and stable perovskite PV for solar windows

Australian researchers from Monash University and CSIRO have reported a way to improve the energy efficiency and longevity of solar integrated glass, while also allowing more natural light to pass through it. The researchers have demonstrated power conversion efficiencies of 15.5% and 4.1% for different types of prototype semi-transparent solar cells, with visible transmittance of 20.7% and 52.4% respectively.

This work builds on achievements made two years ago, when the same team created a solar window prototype that let through 10% of visible light and achieved 17% power conversion efficiency. According to the team, the upper power conversion efficiency achieved in the newer prototype is slightly lower than was achieved back in 2020 – 15.5% compared to 17% – but the pass-through of visible light is “significantly greater”, increasing their viability for real-world applications.

Read the full story Posted: Jun 06,2022