Perovskite applications

Researchers obtain direct visualization of structural dynamics in monocrystalline 2D perovskites

Scientists at Rice University, INSA Rennes, SLAC National Accelerator Laboratory and Northwestern University have managed to directly visualize the structural dynamics in monocrystalline 2D perovskites. While researchers already knew the atoms in perovskites react to light, direct visualization of these reactions is considered a long-standing challenge. Now, it's been made possible to see precisely how those atoms move.

The team's study details the first direct measurement of structural dynamics under light-induced excitation in 2D perovskites. “The next frontier in light-to-energy conversion devices is harvesting hot carriers,” said Rice University’s Aditya Mohite, a corresponding author of the study. “Studies have shown that hot carriers in perovskite can live up to 10-100 times longer than in classical semiconductors. However, the mechanisms and design principles for the energy transfer and how they interact with the lattice are not understood.”

Read the full story Posted: Jan 31,2023

Perovskite catalysts included in DOE's $47 million funding for RD&D of clean hydrogen technologies

The US Department of Energy (DOE) recently announced up to $47 million in funding (DE-FOA-0002920) to accelerate the research, development, and demonstration (RD&D) of affordable clean hydrogen technologies. 

This funding opportunity focuses on RD&D of key hydrogen delivery and storage technologies as well as affordable and durable fuel cell technologies. The RD&D projects will focus particularly on applications for heavy-duty trucks, to reduce carbon dioxide emissions and eliminate tailpipe emissions that are harmful to local air quality. Among the specific topics to be funded in this interest area is perovskite-based catalysts, under the headline of "Hydrogen Carrier Development".

Read the full story Posted: Jan 29,2023

Researchers develop highly efficient p-i-n perovskite solar cells while tackling the issue of endurance to temperature variations

Researchers from Helmholtz-Zentrum Berlin (HZB), Chinese Academy of Sciences (CAS), Swansea University, University of Stuttgart, Henan University, University of Naples Federico II, Queen Mary University of London and Soochow University have investigated a chemical variation that significantly improves the stability of the perovskite thin film in different solar cell architectures, among them the p-i-n architecture.

Daily temperature variations induce phase transitions and lattice strains in halide perovskites, challenging their stability in solar cells. The international team in this work set out to address this issue and improve the stability of PSCs in the face of these changes. 

Read the full story Posted: Jan 28,2023

Researchers use perovskites to drastically reduce carbon dioxide (CO2) emissions from existing iron and steel furnaces

Researchers from the UK's University of Birmingham, in collaboration with China's University of Science & Technology Beijing, have used perovskite materials to design a novel adaptation for existing iron and steel furnaces that could reduce carbon dioxide (CO2) emissions from the steelmaking industry by nearly 90%.

This radical reduction is achieved through a 'closed loop' carbon recycling system, which could replace 90% of the coke typically used in current blast furnace-basic oxygen furnace systems and produces oxygen as a biproduct.

Read the full story Posted: Jan 24,2023

Researchers fabricate solar cells based on gold polyhalide hybrid perovskite

Researchers at the Research Institute of Sweden (RISE) and KTH Royal Institute of Technology have presented the ionic liquid (IL) synthesis of two novel pseudo-2D perovskite-type gold(III)polyiodide compounds and their use as active layers in monolithic solar cells.

The team stated that its recent work represents the first demonstration of film deposition of gold iodide/polyiodide compounds onto porous monolithic substrates with subsequent solar cell characterization. The devices reportedly showed promising photovoltaic performance and could unlock new materials design possibilities, ultimately moving away from lead-based photovoltaic materials. These findings further highlight the use of simple polyiodide entities to increase the structural and electronic dimensionality of gold perovskite-type anions.

Read the full story Posted: Jan 14,2023

Researchers reach >28% efficiency with perovskite-silicon tandem PV cell with textured wafers

Scientists from Saudi Arabia’s King Abdullah University of Science and Technology (KAUST), Deutsches Elektronen-Synchrotron DESY, Academy of Sciences of the Czech Republic and Slovak Academy of Sciences have demonstrated a power conversion efficiency of 28.1% for a perovskite-silicon tandem solar cell based on textured silicon wafers.

Textured silicon wafers used in silicon solar cell manufacturing offer superior light trapping, which is a critical enabler for high-performance photovoltaics. The team explained that a similar optical benefit can be obtained in monolithic perovskite/silicon tandem solar cells, enhancing the current output of the silicon bottom cell. Yet, such complex silicon surfaces may affect the structural and optoelectronic properties of the overlying perovskite films.

Read the full story Posted: Jan 12,2023

Perovskite absorbers enable solar-powered system that converts plastic and greenhouse gases into sustainable fuels

Researchers from the University of Cambridge have developed a system that can transform plastic waste and greenhouse gases into sustainable fuels and other valuable products – using energy from the Sun. The team states that this is the first time that a system that can convert two waste streams into two chemical products at the same time has been achieved in a solar-powered reactor.

The reactor converts carbon dioxide (CO2) and plastics into different products that are useful in a range of industries. In tests, CO2 was converted into syngas, a key building block for sustainable liquid fuels, and plastic bottles were converted into glycolic acid, which is widely used in the cosmetics industry. The system can easily be tuned to produce different products by changing the type of catalyst used in the reactor. The integrated reactor, which uses a light absorber based on perovskites, has two separate compartments: one for plastic, and one for greenhouse gases. 

Read the full story Posted: Jan 10,2023

Researchers report on novel approach for high performance and spectrally stable deep-blue perovskite LEDs

Researchers from Yonsei University, Sungkyunkwan University and Institute for Basic Science (IBS) have proposed a rapid crystallization method based on hot-antisolvent bathing for realization of deep-blue  perovskite light-emitting diodes (PeLEDs). The rapid crystallization method manipulates 2D perovskite phase evolution by controlling the crystallization kinetics for the fabrication of phase-pure 2D Ruddlesden‒Popper perovskites (2D-RPPs), enabling deep-blue-emissive perovskite LEDs.

PeLEDs are considered as promising candidates for next-generation solution-processed full-color displays. However, the external quantum efficiencies (EQEs) and operational stabilities of deep-blue (<460 nm) PeLEDs still lag far behind their red and green counterparts. 2D-RPPs have excellent optoelectronic properties—ideal for LEDs. Although 2D-RPP-based LEDs have rapidly progressed in terms of performance, it is still challenging to demonstrate blue-emissive and color-pure LEDs. The deep blue of current LED displays is usually produced by indium gallium nitride (InGaN), a costly substance. In the field of LEDs, researchers are seeking alternatives and one of them could be found in 2D-RPPs.

Read the full story Posted: Jan 06,2023

Renshine Solar announces 29.0% efficiency for all-perovskite tandem solar cell

Chinese perovskite solar technology company Renshine Solar (Suzhou) has announced 29.0% steady-state power conversion efficiency of all-perovskite tandem solar cell developed in-house. The company now expects to exceed 30% in 2023.

Japan Electrical Safety and Environment Technology Laboratories (JET) has reportedly certified the efficiency claim that was reported for a designated area of 0.04888 cm².

Read the full story Posted: Jan 05,2023

Researchers present new method for fabricating thin films of perovskite oxide semiconductors

Researchers from the University of Minnesota Twin Cities-led, University of Wisconsin–Madison and Pacific Northwest National Laboratory have developed a new method for making thin films of perovskite oxide semiconductors, a class of “smart” materials with unique properties that can change in response to stimuli like light, magnetic fields, or electric fields. 

Their work could allow researchers to harness these properties and even combine them with other emerging nano-scale materials to make better devices such as sensors, smart textiles, and flexible electronics.

Read the full story Posted: Jan 04,2023