New technique could help create better perovskite materials

A recent study by Lawrence Berkeley National Laboratory (Berkeley Lab), Technische Universität München, EPFL and The Pennsylvania State University has found that solar materials manufacturing could be aided by a new instrument that uses two types of light – invisible X-ray light and visible laser light – to probe a perovskite material’s crystal structure and optical properties as it is synthesized.

“When people make solar thin films, they typically have a dedicated synthesis lab and need to go to another lab to characterize it. With our development, you can fully synthesize and characterize a material at the same time, at the same place”, said Carolin Sutter-Fella, a scientist at Berkeley Lab's Molecular Foundry.

MIT team succeeds in making high-quality chalcogenide perovskite thin films

Scientists at MIT recently reported creating the first high-quality thin films of a new family of semiconductor materials - chalcogenide perovskites. This achievement, lead by MIT researcher Rafael Jaramillo, has the potential to impact multiple fields of technology.

Chalcogenide perovskites could have applications in solar cells and lighting, Jaramillo says. He notes, however, that "the history of semiconductor research shows that new families of semiconductors are generally enabling in ways that are not predictable."

Researchers deepen understanding of defects in Hybrid Perovskites

A team of researchers from HZB, CNRS and Charles University used a multi-method approach to quantify and characterize defects in single crystal MAPbI3, giving a cross-checked overview of their properties. The team characterized five different defect types and measured the interaction between these defects and the charge carriers.

MAPI semiconductors consist of organic methylammonium cations and lead iodide octahedra that form a perovskite structure. MAPI based solar cells have achieved efficiencies of 25% within a few years. But so far, the semi-organic semiconductors are still ageing rapidly.

Correlated electrons ‘tango’ in a perovskite oxide at the extreme quantum limit

A team of researchers from Oak Ridge National Laboratory, Florida State University, Argonne National Laboratory, University of Pittsburgh, Pittsburgh Quantum Institute and Sungkyunkwan University has found a rare quantum material in which electrons move in coordinated ways, essentially “dancing.”

Straining the material creates an electronic band structure that sets the stage for exotic, more tightly correlated behavior – similar to tangoing – among Dirac electrons, which are especially mobile electric charge carriers that may someday enable faster transistors.

Scientists suggest new perovskite processing method

Researchers from ITMO University, the Far Eastern Federal University (FEFU), the Image Processing Systems Institute of RAS, and Tokai University (Japan) have discovered a way to fashion perovskite microcrystals into desired shapes for further use in the production of lenses and other optoelectronic elements without loss of quality.

This research opens up new opportunities for the creation of micro-optical elements that could be used in microchips and other optoelectronic devices.