WUSR researcher receives USD$1 million to study the deformability of perovskites

Five Wrocław University of Science and Technology researchers have been awarded over than 12 million PLN (around USD$3.2 million) for research projects under the Maestro and Sonata Bis competitions organized by the National Centre for Science. Among the research area are perovskites, active enzymes, and artificial intelligence.

Targeting experienced scientists, Maestro is a competition for research projects aimed at carrying out pioneering, and also interdisciplinary, research that is important for the development of science and reaching beyond the current state of knowledge, which may result in scientific discoveries.

AMOLF researchers successfully create amorphous perovskite

AMOLF researchers Erik Garnett, Susan Rigter, and colleagues have demonstrated that amorphous perovskite exists. The material can significantly increase the efficiency of solar cells produced from perovskite.

Mystery of amorphous perovskite solved image

Perovskites are naturally crystalline; in other words, the atoms pack together in an ordered pattern. From traditional silicon solar cells, we know that the efficiency of the cells can be boosted if a part of the material is amorphous, meaning the atoms pack together randomly. Erik Garnett from AMOLF was reportedly the first to realize that amorphous perovskite could fulfill the same function. The following challenge was to produce the material and study its properties. Garnett explains why that was difficult: “Perovskite consists of ions. By nature, these easily organize in a crystal lattice, just like table salt, for example. We needed to come up with a trick to prevent those crystals from forming, and we managed to do just that. Using techniques such as X-ray diffraction, we subsequently also demonstrated that the material is amorphous. With this, we delivered the first irrefutable evidence that amorphous perovskite exists.”

Researchers reconfigure the band-edge states of perovskites to enhance their performance

Researchers from UCLA, NREL, The University of Toledo, Yangzhou University, Soochow University, Monash University and Lawrence Berkeley National Laboratory, have found that perovskites have a previously unutilized molecular component that can further tune the electronic property of perovskites.

perovskite material with organic molecules that can add to its electronic properties imageSchematic of perovskite material with organic molecules that can add to its electronic properties. Credit: Jingjing Xue and Rui Wang/UCLA Samueli School of Engineering

Perovskite materials have a crystal-lattice structure of inorganic molecules like that of ceramics, along with organic molecules that are interlaced throughout. Up until now, these organic molecules appeared to only serve a structural function and would not directly contribute to perovskites' electronic performance.

Perovskites could help to dramatically lower the cost of electron sources

Rice University scientists, in collaboration with a team from Los Alamos National Laboratory (LANL), have reported a technology that could dramatically reduce the cost of semiconductor electron sources, key components in various devices that range from night-vision goggles and low-light cameras to electron microscopes and particle accelerators.

Representation of a halide perovskite photocathode imagePerovskite semiconductors (silver) treated with a layer of cesium (blue-green) could be tuned to emit free electrons (gray) over both visible and ultraviolet spectra (colored arrows), and a layer of cesium could regenerate degraded photocathodes.

Billions of dollars are spent each year on photocathode electron sources made from semiconductors containing rare elements like gallium, selenium, cadmium and tellurium. "This should be orders of magnitude lower in cost than what exists today in the market," said study co-corresponding author Aditya Mohite, a Rice materials scientist and chemical engineer. He said the halide perovskites have the potential to outperform existing semiconductor electron sources in several ways.

Researchers stabilize lead halide perovskites using pressure from a diamond anvil cell

Scientists at Stanford University and the Department of Energy’s SLAC National Accelerator Laboratory have used a novel method, based pressure from a diamond anvil cell, to stabilize lead halide perovskites and prevent them from breaking down at room temperature.

The team placed the regular version of the material, prone to instability, in a diamond anvil cell and squeezed it at a high temperature. This treatment reportedly "nudges" its atomic structure into an efficient configuration and keeps it that way, even at room temperature and in relatively moist air.