Chinese scientists synthesize lead-free double perovskite nanocrystals

A research team at the Dalian Institute of Chemical Physics (DICP) in the Chinese Academy of Sciences synthesized a new lead-free double perovskite nanocrystals (NCs) and revealed the hot-carrier dynamic of it.

Chinese team develops lead-free perovskite nanocrystals image

To avoid the toxicity issue of Pb, many efforts of finding a possible replacement are made. "We prepared the lead-free 3D double perovskite NCs and demonstrated that the continuously tunable emission ranged from 395 to 575 nm," said the researchers.

Cornell team uses laser pulses to change the properties of a perovskite material

Researchers at Cornell used theoretical techniques to predict that using intense mid-infrared laser light on a titanium perovskite can dynamically induce a magnetic phase transition – taking the material from its ferromagnetic ground state to a hidden anti-ferromagnetic phase. This dramatic shift could have useful applications, particularly in optical information processing.

“It would be a kind of optical switch,” the researchers said. “You have a material where it’s magnetic and ‘non-magnetic.’ It’s going between those two states with light”.

Perovskite-Info interviews Ossila's lead perovskite scientist

UK-based Ossila provides components, equipment and materials to enable faster and smarter organic electronics research and discovery. Ossila provides both materials and equipment for perovskite researchers, and the company's lead perovskite scientist, Dr. Jonathan Griffin, was kind enough to answer a few questions we had for him.

Perovskite crystals (Ossila)Thanks to improved knowledge about salt-solvent interactions, single crystals of perovskites can now be grown. Pictured above are several single-crystal MAPbBr perovskites, alongside the seed crystals used to grow these crystals

Dr. Griffin holds nearly a decade of experience working in organic photovoltaic research and over 5 years of working with perovskites. At Ossila, Jonathan works on technical support for several material ranges, including perovskites, organic photovoltaics, graphene and other 2-D materials. He is also involved in the development of new test equipment and product ranges. Prior to this, he worked in a postdoctoral research position at the University of Sheffield.

Q: Thank you for your time Dr. Griffin. Can you detail for us Ossila's perovskite product range in general?

Unique perovskite found trapped in a diamond at Earth's surface

University of Alberta scientists have found calcium silicate perovskite at Earth's surface. "Nobody has ever managed to keep this mineral stable at the Earth's surface," said Graham Pearson, a professor in the University of Alberta's Department of Earth and Atmospheric Sciences and Canada Excellence Research Chair Laureate. He explained the mineral is found deep inside Earth's mantle, at 700 kilometers.

"The only possible way of preserving this mineral at the Earth's surface is when it's trapped in an unyielding container like a diamond," he explained. "Based on our findings, there could be as much as zetta tonnes (1021) of this perovskite in deep Earth".

Oxford PV to collaborate with HZB on perovskite optimization for HJ cells

Oxford Photovoltaics announced that it was working with scientists at the new Helmholtz-Zentrum Berlin (HZB) innovation lab to further the optimization of its perovskite cell materials for silicon heterojunction solar cell technology.

The new partnership with HZB aims at furthering commercialization efforts with greater leverage of HZB’s silicon cell material knowledge and specifically heterojunction cells. “Working with HZB to understand solar cell manufacturers’ silicon cells, will allow Oxford PV’s perovskite on silicon tandem formation to be fully optimized, to ensure the most efficient tandem solar cell, and the easy transfer of our technology into our commercial partner’s industrial processes", commented Chris Case, Chief Technology Officer, at Oxford PV. “Oxford PV is now in the final stage of commercializing its perovskite photovoltaic solution, which has the potential to enable efficiency gains that will transform the economics of silicon photovoltaic technology globally.”