Researchers create perovskite quantum dot microarrays for improved displays

Researchers from the Beijing Institute of Technology and MIIT Key Laboratory for Low Dimensional Quantum Structure and Devices have developed perovskite quantum dots microarrays with strong potential for quantum dots color conversion (QDCC) applications, including photonics integration, micro-LEDs, and near-field displays.

QDCC is considered a versatile way to achieve full-color organic light-emitting diodes and micro-light-emitting diodes displays. QDCC provides a wide range of color performance and easy integration. However, conventional QDCC pixels, fabricated by the commonly used method of inkjet printing, tend to be too thin to achieve efficient color conversion. The conventional combination of quantum dots and coffee-ring effects or puddle of particle-laden liquid that occur after evaporation, lowers the light conversion efficiency and emission uniformity in quantum dot microarrays. This also contributes to blue-light leakage or optical crosstalk, where unwanted coupling occurs between signal paths. 

Read the full story Posted: Jun 10,2022

Lead-free perovskites assist in creating a ‘fabric’ that turns body movement into electricity

Scientists at Nanyang Technological University in Singapore (NTU) and Tsinghua University have developed a stretchable and waterproof ‘fabric’ that turns energy generated from body movements into electrical energy. The fabric contains a polymer that, when pressed or squeezed, converts mechanical stress into electrical energy. It is also made with stretchable spandex as a base layer and integrated with a rubber-like material to keep it strong, flexible, and waterproof.

The team showed that tapping on a 3cm by 4cm piece of the new fabric generated enough electrical energy to light up 100 LEDs. The fabric can withstand washing, folding and crumpling without performance degradation, and it could maintain stable electrical output for up to five months, demonstrating its potential for use as a smart textile and wearable power source.

Read the full story Posted: Jun 07,2022

Researchers improve tech for efficient and stable perovskite PV for solar windows

Australian researchers from Monash University and CSIRO have reported a way to improve the energy efficiency and longevity of solar integrated glass, while also allowing more natural light to pass through it. The researchers have demonstrated power conversion efficiencies of 15.5% and 4.1% for different types of prototype semi-transparent solar cells, with visible transmittance of 20.7% and 52.4% respectively.

This work builds on achievements made two years ago, when the same team created a solar window prototype that let through 10% of visible light and achieved 17% power conversion efficiency. According to the team, the upper power conversion efficiency achieved in the newer prototype is slightly lower than was achieved back in 2020 – 15.5% compared to 17% – but the pass-through of visible light is “significantly greater”, increasing their viability for real-world applications.

Read the full story Posted: Jun 06,2022

New technique could help upscale the production of perovskite solar cells

Researchers from the City University of Hong Kong and the Southern University of Science and Technology in Shenzhen, China, have shown that a self-assembled monolayer can facilitate the formation of a large-area perovskite film using a blade-coating process, thus promote the upscaling of perovskite photovoltaic technology.

Researchers build perovskite solar cells with layers of material deposited on an underlying substrate. In adapting the high-speed blade-coating method for perovskite thin-film deposition, the researchers realized that the surface properties of the substrate are critical for large-area coating and perovskite growth. The current process leaves voids at the buried interface of the perovskite film that is detrimental to the device performance. “To solve this problem, we have screened various hole-transporting materials and found that self-assembled monolayers are a class of promising materials for the upscaling of perovskite devices,” said Alex Jen, a professor at City University of Hong Kong.

Read the full story Posted: Jun 01,2022