ZSW designs new process for perovskite solar cell production using environmentally friendly precursor solvents

The Centre for Solar Energy and Hydrogen Research Baden-Württemberg (ZSW) has made progress towards the goal of coating large-area perovskite solar cells on an industrial scale using a process that uses more benign solvents than available hazardous solvents like dimethylformamide. The team of researchers developed a coating process for perovskites that uses a single ecofriendly solvent, dimethyl sulfoxide. The ZSW team applied this method to produce a solar cell nearly as efficient as cells made with the toxic solvent. 

Perovskite precursors have to first be dissolved so they can be applied in uniform layers to the substrate. This requires solvents that usually contain dimethylformamide (DMF), which is hazardous to health and the environment. This toxicity hampers efforts to scale this process up to industrial production. Manufacturers would have to produce and dispose of larger quantities of the solvent and take even more stringent occupational safety measures, also causing costs to rise. For these reasons, many researchers and manufacturers are in search of environmentally compatible solvents that are suitable for industrial applications. This use case requires chemical properties that very few substances exhibit. Dr. Jan-Philipp Becker, the head of the ZSW’s Photovoltaics: Materials Research department, worked with his team to investigate pure dimethyl sulfoxide (DMSO) to see if it could serve this purpose.

Read the full story Posted: Jul 09,2022

Researchers from EPFL and CSEM achieve 31.25% efficiency for tandem perovskite-silicon solar cell

Researchers from the Swiss Center for Electronics and Microtechnology (CSEM) and the École polytechnique fédérale de Lausanne (EPFL) have reported a power conversion efficiency exceeding 30% for a 1 cm2 tandem perovskite-silicon solar cell, which represents a world record for a PV device of this kind. The team achieved an efficiency of 30.93% for a 1 cm2 solar cell based on high-quality perovskite layers from solution on a planarized silicon surface and an efficiency of 31.25% on a cell of the same size and fabricated with a hybrid vapor/solution processing technique compatible with a textured silicon surface.

“These results constitute two new world records: one for the planar and one for the textured device architecture,” the researchers explained, noting that both efficiencies were certified by the US Department of Energy's National Renewable Energy Laboratory (NREL). “The latter approach provides a higher current and is compatible with the structure of current industrial silicon solar cells”. Unfortunately, the researchers did not disclose technical details on how they improved the efficiency of both devices.

Read the full story Posted: Jul 07,2022

Researchers fabricate perovskite-silicon tandem solar cell with 27.6% efficiency

A research group that includes scientists from Chinese module manufacturer JinkoSolar, Australian National University, the Beijing Institute of Technology and Peking University has developed a monolithic perovskite-silicon n-type tandem solar cell based on tunnel oxide passivated contacts (TOPCon) tech for the bottom cell.

“We fabricate the perovskite sub-cell conformally on the damage-etched front surface to mitigate the negative impacts of rough c-Si substrates, thus preventing shunt paths across carrier transport layers, absorber layers, and their interfaces in relevance,” the scientists said, noting that they followed a standard wafering and etching process that is commonly used in the PV industry.

Read the full story Posted: Jul 04,2022