New structure allows metal halide perovskites to emit blue light

Florida State University (FSU) researchers have discovered a novel structure for metal halide perovskite materials that shows potential for more efficient technologies.

Professor of Chemistry and Biochemistry Biwu Ma and his team's new study explains how they created a hollow nanostructure for metal halide perovskites that would allow the material to emit a highly efficient blue light.

CSoT demonstrates a 6.6" 384x300 OLED display that uses perovskite quantum dots for color conversion

China-based display maker China Star (CSoT, a subsidiary of TCL) demonstrated a 6.6-inch 384x300 OLED display that uses perovskite quantum dots as a color conversion film.

CSoT is using blue OLED emitter materials, and a perovskite layer to up-convert the color to green (this is a monochrome prototype - evidently a very early prototype). CSoT brands its perovskite-OLEDs as PE-OLED and we believe this is the first time a perovskite-enhanced display has been publicly demonstrated.

Researchers demonstrate high light extraction efficiency of perovskite photonic crystals

Researchers at NTU, lead by Assoc. Prof. Wang Hong, recently demonstrated high light extraction efficiency of perovskite photonic crystals fabricated by delicate electron-beam lithography.

Researchers demonstrate high light extraction efficiency of perovskite photonic crystals image

The perovskite photonic crystals exhibit both emission rate inhibition and light energy redistribution simultaneously. They observed 7.9-fold reduction of spontaneous emission rate with a slower decay in perovskite photonic crystals due to photonic bandgap effect (PBG).

Perovskite-based quantum dots - a guest post by Ossila

What are Quantum Dots?

Quantum dots (QDs) are semiconducting nanocrystals that are very small – only a few nanometres in size. In display technologies, the most common types of QDs used are composed of a metal chalcogenide core. These QDs have the chemical formula XY – where X is a metal and Y is sulfur, tellurium or selenium (e.g. CdTe, CdSe, ZnS) – which is encased with the shell of a second semiconductor (e.g. CdSe/CdS). Their tiny dimensions mean that charge carriers are confined in close proximity, which gives QDs optical and electronic properties that are substantially different from those of large semiconductor crystals.

QLEDs vs OLEDs

In particular, QDs have enhanced light absorption and emission, making them particularly suitable for display technologies. Metal chalcogenide quantum dots (MCQDs) have already made it into commercial products – most notably, in Samsung’s QLED television range. Here, a blue LED backlight excites a layer of quantum dots on an LCD panel, causing them to emit light. The color of light emitted by the quantum dots depends on their size – with small dots emitting blue light, and progressively larger dots emitting green, yellow, orange, and red light.

Ossila QD structure imageLeft: Core-shell quantum dot structure. Right: The size of the dot defines the color of light that the dot emits. (Source: Ossila.com)

Is Apple developing perovskite-enhanced QD-LED displays?

Quantum Dots are used today in the display industry to enhance the quality and efficiency of LCD-based displays, most notably in TVs (one example is Samsung's premium QLED TV range). While these are still LCD displays enhanced by QDs, quantum dots also have the larger potential to create truly emissive displays (QD-LED) which could compete with OLEDs and even surpass them in quality, efficiency and ease of production.

Apple iPhone XS photo

Several companies (including Samsung, BOE, LG, CSoT and others) are indeed developing QD-LED displays (Samsung, interestingly, is preparing to kick-start hybrid QD-OLED TV pilot production next year). Apple is not left behind, and the company is already known to be looking into QD-LED technologies.