Helio Display Materials to move perovskite-based display materials to pilot-scale production

Helio Display Materials has announced it will be moving its perovskite-based display materials (that were jointly invented within Cambridge and Oxford Universities) to pilot-scale production.

The materials generate light of the desired color by converting light rather than filtering it which provides power savings of up to 40% and a step change improvement in color gamut. With perovskites, the wavelength of emitted light can be tuned by chemical composition. This contrasts with quantum dots which rely on quantum confinement in identically sized nanometer scale particles. Color by composition massively simplifies the manufacturing process for perovskites vs. quantum dots and allows the use of standard chemical industry processes and equipment.

Read the full story Posted: Dec 08,2023

Researchers report light guide plate based on perovskite nanocomposites

Perovskite nanocrystals (PNCs)/polymer nanocomposites can combine the advantages of both materials, but achieving the fabrication of PNCs/polymer nanocomposites by bulk polymerization has proven Very challenging. A team of scientists, led by Professor Bai Yang from Jilin University in China, has adopted a a two-type ligand strategy to fabricate bulk PNCs/polystyrene (PS) nanocomposites, including a new type of synthetic polymerizable ligand.

The CsPbCl3 PNCs/PS nanocomposites reportedly showed extremely high transparency that can be ascribed to the Rayleigh scattering as the PNCs distribute uniformly without obvious aggregation. Based on this behavior, the team first exploited the potential of PNCs to serve as scatters inside light guided plate (LGP), whose surface illuminance and uniformity can be improved, and this new kind of LGP is compatible with advanced liquid crystal display technology. 

Read the full story Posted: Nov 04,2023

Q&A with Yanek Hebting, General Manager at Greatcell Solar materials

Australia-based Greatcell Solar Materials produces and supplies perovskite materials, and is one of the industry's pioneer companies. We conducted an interviw with Dr. Yanek Hebting, Greatcell's general manager, who updates us on the company's business, material and his views on the perovskite industry.

Hello Dr. Hebting, Thank you for this Q&A. Can you introduce us to Greatcell Solar Materials?

Greatcell Solar Materials Pty Ltd was created in October 2018 as the spin-off of the Materials Division of Greatcell Solar, formerly Dyesol. Greatcell Solar Materials is a manufacturer and supplier of materials (including perovskite precursors, dyes, ligands, titania pastes, electrolytes as well as components) for energy system applications to the photovoltaics research sector and the electronics industry.

All products are manufactured and shipped from our facility in Queanbeyan, NSW Australia.

Can you tell us a bit about the demand for perovskite materials? Does it come mostly for research, or pilot lines?

As COVID restrictions around the world have eased and global activity resumed, the demand for perovskite materials has significantly increased since.
Greatcell Solar Materials provides both bulk quantities for industrial partners as well as small quantities for research purposes. The demand for research purpose will always be a part of the demand, it is exciting to see some pilot lines take fruition and begin the process of commercialization.

Read the full story Posted: Sep 18,2023

Researchers develop method for controlled on-site growth of perovskite nanocrystal arrays

Researchers at MIT have developed a bottom-up approach for precise and scalable formation of perovskite nanocrystal arrays with deterministic control over size, number, and position. The new platform enables researchers to 'grow' halide perovskite nanocrystals with precise control over the location and size of each individual crystal, integrating them into nanoscale light-emitting diodes.

Halide perovskite materials have largely been implemented into thin-film or micron-sized device applications. Precisely integrating these materials at the nanoscale could open up even more remarkable applications, like on-chip light sources, photodetectors, and memristors. However, achieving this integration has remained challenging because this delicate material can be damaged by conventional fabrication and patterning techniques.

Read the full story Posted: Jul 08,2023

Canon develops perovskite quantum-dot inks for use in next-gen displays

Canon has announced that it has developed perovskite quantum-dot inks for use in next-generation displays, with improved durability and potential for application in high-image-quality displays.

Quantum dots are semiconductor nanocrystals that measure only a few nanometers in diameter and can emit light with high brightness and high color purity. Displays with quantum-dot technology are attracting growing attention due to their wide color gamut that makes possible high visual expressiveness. Therefore, quantum dots for display is sought to achieve higher color purity and higher light utilization efficiency. In addition, though cadmium (Cd) has thus far been the preferred material for quantum dots, due to environmental concerns, there is a growing interest in Cd-free materials.

Read the full story Posted: May 31,2023

Researchers design ITO-free silicon-integrated perovskite electrochemical cell for light-emission and light-detection

Researchers from Russia's Alferov University, ITMO University, Far Eastern Branch of Russian Academy of Sciences, Peter the Great St. Petersburg Polytechnic University, Skolkovo Institute of Science and Technology and China's Qingdao Innovation and Development Center have developed a novel design for a perovskite electrochemical cell for light-emission and light-detection, where the active layer consists of a composite material made of halide perovskite microcrystals, polymer support matrix, and added mobile ions.

Schematic diagrams of (a) the typical PeLED device structure, where CTL - charge transfer layer, QD - quantum dots and (b) the team's PeLEC device structure, where SWCNT - single-walled carbon nanotubes. Image from Opto-Electronic Advances.

The team explained that while halide perovskite light-emitting devices exhibit exceptional properties such as high efficiency, high color purity, and broad color gamut, their industrial integration generally suffers from the technological complexity of devices' multilayer structure alongside in-operation induced heating poor stability. Halide perovskite light-emitting electrochemical cells are a novel type of perovskite optoelectronic device that differs from the perovskite light-emitting diodes by a simple monolayered architecture. 

Read the full story Posted: May 14,2023

Perovskite-Info launches a new edition of its Perovskite for Displays Market Report

Perovskite-Info is proud to announce an update to our Perovskite for the Display Industry Market Report. This market report, brought to you by the world's leading perovskite and OLED industry experts, is a comprehensive guide to next-generation perovskite-based solutions for the display industry that enable efficient, low cost and high-quality display devices. The report is now updated to May 2023, with all the latest commercial and research activity.

Reading this report, you'll learn all about:

  • Perovskite materials and their properties
  • Perovskite applications in the display industry
  • Perovskite QDs for color conversion
  • Prominent perovskite display related research activities

The report also provides a list of perovskite display companies, datasheets and brochures of pQD film solutions, an introduction to perovskite materials and processes, an introduction to emerging display technologies and more.

Read the full story Posted: May 11,2023

Researchers fabricate full-color flexible microLEDs using perovskite QDs

Researchers from Korea's KIMM institute have fabricated full-color flexible microLED devices, using blue LEDs and perovskite quantum dot color conversion layers. The demonstrated device featured  1 mm pixel pitch LEDs (25.4 PPI) and could be bent with a radius of 5 mm without being damaged.

Flexible perovskite QD microLED array (KIMM)

The researchers used a perovskite-QD and siloxane composite using ligand exchanged PQD with silane composite followed by surface activation by an addition of halide-anion containing salt. Due to this surface activation, the researchers say that it was possible to construct the PQD surface with a silane ligand using a non-polar organic solvent that does not damage the PQD. As a result, the ligand-exchanged PQD with a silane compound exhibited high dispersibility in the siloxane matrix and excellent atmospheric stability.

Read the full story Posted: Mar 28,2023

The MicroLED Industry Association to host a Perovskite microLED technology webinar

On March 27 the MicroLED Industry Association will host a private webinar on perovskite materials for the microLED industry. Perovskite materials hold great promise for the solar industry and in recent years we are seeing promising signs for the adoption of perovskites the display industry.

Researchers Fabricate Large-area Sky-blue PeLEDs image

The upcoming Seminar will feature four world-leading speakers, and will also be open to a Q&A session. We will learn more about the state-of-the-art perovskite research and development, with a focus of course on applications in the microLED industry - for both perovskite QDs and PeLEDs.

Read the full story Posted: Dec 20,2022

Researchers develop new perovskite-based approach for blue quantum dots synthesis and analysis

Researchers from The University of Tokyo and Yamagata University have addressed the difficulty in creating blue quantum dots by developing a unique self-organizing approach for producing lead bromide perovskite quantum dots. The research also incorporates cutting-edge imaging technology to characterize these novel blue quantum dots.

Quantum dots (QDs) are used in optoelectronic devices and quantum computing, among other things, and are referred to as "artificial atoms" due to their confined and distinct electronic properties. Quantum dots have characteristics that fall in between those of bulk semiconductors and individual atoms and molecules. Their photoelectric qualities vary depending on their size and shape. Quantum dots (QDs) are considered attractive materials for the emissive constituent of light-emitting diodes (LEDs) due to their high color intensity in a small spectral region, facile color tunability, and notable stability. Moreover, QD-based materials exhibit refined colors, longer lifetimes, reduced production costs, and lower energy requirements compared to typical luminescent materials used in organic light-emitting diodes (OLEDs).

Read the full story Posted: Nov 23,2022