DOE announces $56 Million to advance U.S. solar manufacturing

The Biden-Harris Administration, through the U.S. Department of Energy (DOE), has announced new initiatives and $56 million in funding to promote innovation in solar manufacturing and recycling. The funding will aim to help make clean energy more affordable and reliable, create jobs and enhance U.S. economic growth and competitiveness. Developing more solar power, the cheapest form of new electricity supply, is key to achieving President Biden’s goal of 100% clean electricity by 2035.

The new programs that were announced are designed to drive innovation in solar technology and manufacturing, supporting opportunities for the U.S. to expand production of thin-film modules, which do not rely on foreign-dominated supply chains, as well as supporting newer technologies like perovskite solar cells.

Read the full story Posted: Jul 15,2022

The DoE awards $1.25 million to perovskite research projects, issues an RFI for perovskite efficiency targets

The US Department of Energy (DoE) awarded nearly $40 Million for grid-decarbonizing solar technologies projects. The DoE awarded the funds to 40 research projects, several of which are perovskite related. We'll list the perovskite projects (which were awarded a total of $1.25 million) below.

The DoE also issued a request for information (RFI) to gather input on efficiency, stability and replicability performance targets for perovskite photovoltaic devices that could be utilized to demonstrate technical and commercial readiness for future funding programs.

Read the full story Posted: Oct 20,2021

Researchers stabilize perovskites in MOFs for use in LEDs

Researchers from the U.S. Department of Energy's (DoE) Argonne National Laboratory, Brookhaven National Laboratory, Los Alamos National Laboratory, SLAC National Accelerator Laboratory and Taiwan's Academia Sinica have reported the preparation of stable perovskite nanocrystals for LEDs.

Bright and stable LEDs made with perovskite nanocrystals imageLight-emitting diodes made from perovskite nanocrystals (green) embedded in a metal-organic framework. Image from

Perovskite nanocrystals' unstable nature has so far hindered their potential to be used as LED materials. However, the research team managed to stabilize the nanocrystals in a porous structure called a metal-organic framework, or MOF for short. Based on earth-abundant materials and fabricated at room temperature, these LEDs could one day enable lower cost TVs and consumer electronics, as well as better gamma-ray imaging devices and even self-powered X-ray detectors with applications in medicine, security scanning and scientific research.

Read the full story Posted: Sep 08,2021

Photonic Curing to speed up production of perovskite solar cells

University of Texas at Dallas researchers, led by Dr. Julia Hsu, have shown that a technique called photonic curing can be used to manufacture perovskite solar cells faster than other current methods.

Hsu's research aims to solve a problem that has impeded large-scale manufacturing of flexible electronics and solar panels: the need to reduce the amount of time for the slowest part of production, called annealing. In this stage, the thin film must be heated to high temperatures, a step that can sometimes take hours and make production costly.

Read the full story Posted: Jul 23,2021

DoE awards $14 million to form a new center to promote perovskite photovoltaics

The Department of Energy recently awarded $14 million to form a center, led by Sandia National Laboratories, to improve the understanding of perovskite-based photovoltaic technologies and determine the best tests to evaluate the new solar panels' lifetimes.

Perovskite-based photovoltaic technologies still have several challenges to overcome before they can compete against conventional solar panels. The Perovskite Photovoltaic Accelerator for Commercializing Technologies Center aims to offer solutions to these challenges.

Read the full story Posted: Jul 09,2021

Hunt Perovskite Technologies secures DOE funding

Hunt Perovskite Technologies (HPT) recently revealed that it has been selected for an award of $2.5 million in financing from the United States Department of Energy's (DOE) Office of Energy Efficiency & Renewable Energy Solar Energy Technologies Office Fiscal Year 2020 Perovskite Funding Program.

In addition, HPT is also co-Principle Investigator and collaborative partner in two other DOE perovskite funding award selections, including a $1.5 million award to SLAC National Accelerator Laboratory and a $1.25 million award to University of North Carolina at Chapel Hill (UNC).

Read the full story Posted: Apr 17,2021

Researchers suggest ways to produce active and stable perovskite oxide-based OER materials

A study led by scientists at the U.S. Department of Energy's (DOE) Argonne National Laboratory has shown a shape-shifting quality in perovskite oxides that could be promising for speeding up the oxygen evolution reaction (OER) that is vital for hydrogen production (and a variety of other chemical processes). The research shows that perovskite oxides could be used to design new materials for making renewable fuels and also for storing energy.

New design rules for active and stable perovskite oxide-based OER materials imageSurface evolution of a lanthanum cobalt oxide perovskite. Image credit: ANL

Perovskite oxides are less expensive than precious metals such as iridium or ruthenium that also promote OER. But perovskite oxides are not as active (in other words, efficient at accelerating the OER) as these metals, and they tend to slowly degrade.

Read the full story Posted: Apr 12,2021

U.S DoE sets ambitious goals to cut solar costs and invests $128 Million in solar initiatives and technologies

The U.S. Department of Energy (DoE) recently announced an ambitious new target to cut the cost of solar energy by 60% within the next ten years, in addition to nearly $128 million in funding to lower costs, improve performance, and speed the deployment of solar energy technologies.

To that end, the DoE has allocated funding through its Solar Energy Technologies Office (SETO), to support advancing two materials used to make solar cells: perovskites and cadmium telluride (CdTe) thin films.

Read the full story Posted: Mar 26,2021

First visualization of polarons forming in perovskite materials

Researchers at the Department of Energy's SLAC National Accelerator Laboratory and Stanford University have used the lab's X-ray laser to watch and directly measure the formation of polarons for the first time. Polarons are fleeting distortions in a material's atomic lattice that form around a moving electron in a few trillionths of a second, then quickly disappear. Despite their transient nature, they do affect a material's behavior, and may even be the reason that solar cells made with lead hybrid perovskites achieve extraordinarily high efficiencies in the lab.

Visualization of dynamic polaronic strain fields in hybrid lead halide perovskites imagePolaron 'bubbles' of distortion form around charge carriers ' electrons and holes that have been liberated by pulses of light ' which are shown as bright spots here. Image by SLAC

Perovskite materials are famously complex and hard to understand, according to Aaron Lindenberg, an investigator with the Stanford Institute for Materials and Energy Sciences (SIMES) at SLAC and associate professor at Stanford who led the research. While scientists find them exciting because they are both efficient and easy to make, raising the possibility that they could make solar cells cheaper than today's silicon cells, they are also highly unstable, break down when exposed to air and contain lead that has to be kept out of the environment.

Read the full story Posted: Jan 05,2021

Researchers swap isotopes to improve perovskite solar cell efficiency

Researchers at the Department of Energy's Oak Ridge National Laboratory and the University of Tennessee, Knoxville, have led a study into perovskite solar cells that has revealed a way to slow phonons, the waves that transport heat.

The discovery has the potential to improve hot-carrier solar cells, which convert sunlight to electricity more efficiently than conventional solar cells by harnessing photogenerated charge carriers before they lose energy to heat.

Read the full story Posted: Oct 06,2020