Solliance partners reach new efficiency record with four terminal tandem configurations

Solliance partners TNO, imec/EnergyVille and the Eindhoven University of Technology, have reported a 18.6% efficient highly near infrared transparent perovskite solar cell. When combined in a four terminal tandem configuration with an efficient Panasonic crystalline silicon (c-Si) cell or with a Miasolé flexible CIGS cell, the configuration delivered new record power conversion efficiencies of 28.7% and 27.0%, respectively.

The researchers explained that four terminal tandems allow to build on experience and practices already available in the industry. In addition, four terminal perovskite/c-Si tandems can be applied broadly and are, for example, very beneficial in combination with bifacial c-Si solar cells which, depending on the actual albedo, can readily achieve a total power generation density as high as 320 W/m².

Researchers design a 15.2%-efficient foldable perovskite solar cell with a carbon nanotube electrode

Scientists from South Korea have developed a foldable thin-film device with promising characteristics. Integrating a perovskite cell material and a carbon nanotube electrode, the group fabricated a device that achieved 15.2% efficiency and could be folded more than 10,000 times at a bending radius of 0.5mm.

A 15.2%-efficient solar cell that you can fold in half image

Solar cell materials tend to be quite sensitive. Designing and manufacturing devices that can withstand the stress of being folded and bent is challenging, and many of even the most promising solutions are still quite limited in their flexibility. The scientists at Pusan National University in South Korea took a major step forward in solving this problem, fabricating a device that can be folded down to a ‘bending radius’ – the minimum size of fold possible without causing damage – of 0.5mm.

CITYSOLAR project to develop perovskite/OPV hybrids for photovoltaic windows

A new EU project called "CITYSOLAR" aims to revolutionize the market for transparent solar cells for windows by combining two photovoltaic (PV) technologies in a tandem configuration. The project has received 3,779,242 EUR in support from the H2020 framework programme. Transparent solar cells for windows have been known for several years, but are still not sufficiently efficient - which is what the new project will attempt to change.

“We develop new innovative concepts within light management and solar module integration that are specifically targeted at new promising organic and hybrid thin film PV technologies, and by that we go significantly beyond state-of-the-art in terms of efficiency for transparent photovoltaics. It’s a revolutionary new concept,” says Professor Aldo di Carlo, Cnr-Ism, who is coordinator of the new project and is thrilled about the support of "CITYSOLAR" from the H2020 framework.

Dual Passivation technique yields perovskite solar cells with 20.14% efficiency

Researchers from the Shaanxi Normal University in China have designed a perovskite solar cell based on methylammonium lead iodide (MAPbI3) through a dual passivation technique that simultaneously passivates trap defects in both the perovskite and electron transport layer (ETL) films.

“So far, most techniques for modifying perovskite solar cells focus on either the perovskite or electron transport layer,” the research group reported, noting that the ETL must have decent optical transmittance and high electron mobility to extract photo‐induced carriers and contribute to the solar cell efficiency.

Metallic line defects in perovskites could open the door to next-gen smart windows and displays

A research team, led by University of Minnesota Professor K. Andre Mkhoyan, has made a discovery that blends the best of two sought-after qualities for touchscreens and smart windows—transparency and conductivity.

Metallic line defect in wide-bandgap transparent perovskite BaSnO3 imageThe atomic arrangement of both the BaSnO3 crystal and the metallic line defect. Image credit UMN

The researchers have observed metallic lines in a perovskite crystal. Perovskites are abundant in the Earth’s center, and barium stannate (BaSnO3) is one such crystal. However, it has not been studied extensively for metallic properties because of the prevalence of more conductive materials like metals or semiconductors. The finding was made using advanced transmission electron microscopy (TEM), a technique that can form images with magnifications of up to 10 million.