Perovskite Quantum Dots (PQDs)
Perovskites are materials that share a crystal structure similar to the mineral called perovskite, which consists of calcium titanium oxide (CaTiO3).
Depending on which atoms/molecules are used in the structure, perovskites can possess an impressive array of interesting properties including superconductivity, ferroelectricity, charge ordering, spin dependent transport and much more. Perovskites therefore hold exciting opportunities for physicists, chemists and material scientists.
Quantum dots (QDs), sometimes referred to as semiconducting nanocrystals (NCs), are miniscule particles of a semiconducting material with diameters in the range of 2-10 nanometers (10-50 atoms). Quantum dots have properties labeled as intermediate between bulk semiconductors and discrete atoms or molecules. Their optoelectronic properties change as a function of both size and shape. QDs demonstrate optical and electronic properties different from those of larger particles. In fact, QDs tend to exhibit quantum size effects in their optical and electronic properties, like tunable and efficient photoluminescence (PL), with narrow emission and photochemical stability. This is why QDs have been incorporated as active elements in a wide variety of devices and applications, some of which are already commercially available, such as QD-based displays.
Perovskite quantum dots (PQDs) are a class of quantum dots based on perovskite materials. While these are relatively new, they have already been shown to have properties matching or surpassing those of the metal chalcogenide QDs: they are more tolerant to defects and have excellent photoluminescence quantum yields and high colour purity. Such attractive properties are extremely suited for electronic and optoelectronic applications and so perovskite quantum dots have significant potential for real world applications, some of which are already emerging, including LED displays and quantum dot solar cells.
Quantum Solutions starts offering evaluation samples of next-gen perovskite-QD based X-Ray Scintillators
UK-based Quantum Solutions started to ship evaluation samples of its next-gen perovskite quantum dots (pQD) X-Ray Scintillators. The company says that these scintillators offer very high sensitivity, high light output, high resolution, low afterglow and can be processed on large areas.
Quantum Solutions started developing these materials in 2020, and already managed to increase the light output (brightness) 10 times over. The company says that this is due to the unique perovskite structure that allows to tune the properties by composition, particle sizes/shapes, ligands, etc. The product already matches the performance of commercial CsI(Tl) and GADOX scintillators. The company is working with key customers in the medical field and non-destructive testing field, and are continuing to develop and customize the product.
Researchers create perovskite quantum dot microarrays for improved displays
Researchers from the Beijing Institute of Technology and MIIT Key Laboratory for Low Dimensional Quantum Structure and Devices have developed perovskite quantum dots microarrays with strong potential for quantum dots color conversion (QDCC) applications, including photonics integration, micro-LEDs, and near-field displays.
QDCC is considered a versatile way to achieve full-color organic light-emitting diodes and micro-light-emitting diodes displays. QDCC provides a wide range of color performance and easy integration. However, conventional QDCC pixels, fabricated by the commonly used method of inkjet printing, tend to be too thin to achieve efficient color conversion. The conventional combination of quantum dots and coffee-ring effects or puddle of particle-laden liquid that occur after evaporation, lowers the light conversion efficiency and emission uniformity in quantum dot microarrays. This also contributes to blue-light leakage or optical crosstalk, where unwanted coupling occurs between signal paths.
Researchers achieve 17.5% efficiency with terbium-doped perovskite solar cell
Researchers from Chonnam National University in South Korea, Shivaji University in India, the Belgian research institute KU Leuven and Cardiff University in the UK have built an all-inorganic perovskite solar cell with a terbium doped solar absorber, which reportedly increases thermal stability.
The scientists developed a low-cost and simple hot-air method and also used terbium doping and quantum passivation techniques to stabilize the perovskite phase in the ambient conditions - with all processes carried out in ambient conditions.
Applications of perovskite materials in the display industry
This article was extracted from the Perovskite for Displays market report.
Given perovskites materials' unique optical properties, these materials are being intensively researched for both photovoltaic and display applications (as well as several others). In this article we will take a look into the possible application areas in the display industry that can benefit from perovskite materials.
Perovskite QDs
Perovskite-based QDs (PerQDs) are considered a viable Cd-free alternative for display applications, with high PL quantum yields, wide wavelength tunability and ultra-narrow band emission. The main advantages of PerQDs are:
- Low cost
- High performance
- RoHS compliance (despite the lead content)
The Perovskite for Displays Market Report updated to April 2022
Perovskite-Info is proud to announce an update to our Perovskite for the Display Industry Market Report. This market report, brought to you by the world's leading perovskite and OLED industry experts, is a comprehensive guide to next-generation perovskite-based solutions for the display industry that enable efficient, low cost and high-quality display devices. The report is now updated to April 2022.
Reading this report, you'll learn all about:
- Perovskite materials and their properties
- Perovskite applications in the display industry
- Perovskite QDs for color conversion
- Prominent perovskite display related research activities
The report also provides a list of perovskite display companies, datasheets and brochures of pQD film solutions, an introduction to perovskite materials and processes, an introduction to emerging display technologies and more.
New ‘self-driving’ lab developed to advance the understanding of metal halide perovskites
Researchers from North Carolina State University and the University at Buffalo have developed a 'self-driving lab' that uses artificial intelligence (AI) and fluidic systems to advance the understanding of metal halide perovskite (MHP) nanocrystals. This self-driving lab can also be used to investigate other semiconductor and metallic nanomaterials.
'We've created a self-driving laboratory that can be used to advance both fundamental nanoscience and applied engineering,' says Milad Abolhasani, corresponding author of a paper on the work and an associate professor of chemical and bimolecular engineering at NC State.
Researchers use quantum dots to boost perovskite solar cell efficiency & scalability
Researchers at EPFL, Zurich University of Applied Sciences, Ulsan National Institute of Science and Technology, University of Ulsan and Uppsala University have designed an innovative way to increase the performance of perovskite solar cells and maintain it at a high level even at large scales. The new approach replaces the electron-transport layer with a thin layer of quantum dots.
With this new approach, the team, led by Professor Michael Grätzel at EPFL and Dr Dong Suk Kim at the Korea Institute of Energy Research, addressed one of the major obstacles facing the commercialization of perovskite solar cells - the fact that their power-conversion efficiency and operational stability drop as they scale up, making it a challenge to maintain high performance in a complete solar cell.
DSCC: perovskite-based QD films for LCD applications could enter the market in 2022
Display market research firm DSCC says that perovskite-based QD films for LCD display applications could enter the market in 2022. DSCC says that perovskite materials could increase efficiency and color gamut compared to current solutions.
Last year we reported that Zhijing Nanoech has concluded a successful pilot with TCL, which has produced 500 75-inch QD-enhanced LCD TVs with Zhijing's PQDF films. The company hopes to achieve a design win with TCL for mass production.
The Perovskite for Displays Market Report updated to January 2022
Perovskite-Info is proud to announce an update to our Perovskite for the Display Industry Market Report. This market report, brought to you by the world's leading perovskite and OLED industry experts, is a comprehensive guide to next-generation perovskite-based solutions for the display industry that enable efficient, low cost and high-quality display devices. The report is now updated to January 2022.
Reading this report, you'll learn all about:
- Perovskite materials and their properties
- Perovskite applications in the display industry
- Perovskite QDs for color conversion
- Prominent perovskite display related research activities
The report also provides a list of perovskite display companies, datasheets and brochures of pQD film solutions, an introduction to perovskite materials and processes, an introduction to emerging display technologies and more.
The Perovskite for Displays Market Report updated to October 2021
Perovskite-Info is proud to announce an update to our Perovskite for the Display Industry Market Report. This market report, brought to you by the world's leading perovskite and OLED industry experts, is a comprehensive guide to next-generation perovskite-based solutions for the display industry that enable efficient, low cost and high-quality display devices. The report is now updated to October 2021.
Reading this report, you'll learn all about:
- Perovskite materials and their properties
- Perovskite applications in the display industry
- Perovskite QDs for color conversion
- Prominent perovskite display related research activities
The report also provides a list of perovskite display companies, datasheets and brochures of pQD film solutions, an introduction to perovskite materials and processes, an introduction to emerging display technologies and more.
Pagination
- Previous page
- Page 4
- Next page