Korean scientists develop graphene electrode to enable next-gen perovskite solar cells

Several research institutions in South Korea are actively conducting research and development on next-generation solar cells, heightening expectations for commercialization. The research team led by Prof. Yoon Soon-gil of Chungnam National University has developed a new graphene electrode to produce perovskite solar cells at a low temperature. In addition, the team led by Prof. Choi Kyoung-jin of the School of Materials Science and Engineering at UNIST has developed a new concept tandem solar cell using transparent conductive adhesives (TCA).

The graphene electrode developed by Professor Yoon’s team can help create a perovskite solar cell at a low temperature and can raise both safety and economic efficiency.

Researchers improved the stability of PSCs using hybrids of graphene and molybdenum disulphide quantum dots

Researchers from the Graphene Flagship have managed to increase the stability of perovskite solar cells (PSCs) using hybrids of graphene and molybdenum disulphide quantum dots.

Graphene inks help stabilize the stability of perovskite solar cells

The team used molybdenum disulphide quantum dot/graphene hybrids to address PSCs' instability issue. The collaboration between research institutions and industrial partners enabled by Graphene Flagship, yielded an ink based on graphene and related materials (GRMs). Layering this over the PSCs caused them to drastically increase in stability.

Emberion team design perovskite-QDs that combine with graphene to create unique photodetectors

Emberion researchers have shown that colloidal quantum dots (QDs) combined with a graphene charge transducer can provide a photoconducting platform with high quantum efficiency and large intrinsic gain, yet compatible with cost-efficient polymer substrates. The team demonstrated methods to couple large QDs (>6 nm in diameter) with organometal halide perovskites, enabling hybrid graphene photo-transistor arrays on plastic foils.

Emberion team uses graphene and perovskite QDs for advanced photodetctors

The resulting arrays simultaneously exhibited a specific detectivity of 5 × 1012 Jones and high video-frame-rate performance. PbI2 and CH3NH3I co-mediated ligand exchange in PbS QDs improved surface passivation and facilitated electronic transport, yielding faster charge recovery, whereas PbS QDs embedded into a CH3NH3PbI3 matrix produce spatially separated photocarriers leading to large gain.

Graphene to increase efficiency of perovskite solar cells

Researchers from Italy’s University of Florence have found that graphene could significantly improve the efficiency of perovskite solar cells. The researchers have shown how the introduction of graphene and graphene oxide doped with lithium atoms (GO-Li) into a perovskite-based cell may increase its conversion efficiency, as both the carrier recombination dynamics and the defect density of the perovskite are considerably improved.

The scientists used graphene doped mesoporous TiO2 (G+mTiO2) with the addition of a lithium-neutralized graphene oxide (GO-Li) interlayer as ETL. They found that the carrier collection efficiency is increased by about a factor two with respect to standard mTiO2.

Perovskite QDs combine with graphene oxide to create artificial photosynthesis

Researchers from Sun Yat-Sen University in China have created a composite of perovskite quantum dots and graphene oxide that can reduce CO2 when stimulated with light. It is referred to as the first known example of artificial photosynthesis based on perovskite quantum dots.

Perovskites and GO make for an efficient photocatalyst image

The team prepared quantum dots – semiconductor nanoparticles – of a highly stable cesium–lead halide perovskite, as well as a composite material made of these quantum dots and graphene oxide. Both materials showed an efficient absorption of visible light and strong luminescence. The team used these products to achieve a fundamental step in artificial photosynthesis – the reduction of CO2. To simulate sunlight, they used a xenon lamp with an appropriate filter.