First Graphene, Halocell and QUT secure funding for perovskite PV project

Graphitic materials supplier First Graphene has announced an R&D collaboration with Greatcell Energy, trading as Halocell Energy, and the Queensland University of Technology (QUT) to commercialize perovskite solar cell fabrication. The project has received a Cooperative Research Centers Project (CRC-P) grant worth over AUD$2 million (around $USD1,300,000).

The research and development project is intended to commercialize ultra-low-cost, flexible perovskite solar cell fabrication using Halocell’s roll-to-roll production process at the company’s Wagga Wagga plant, First Graphene said in an announcement. Through the project, First Graphene plans to develop cost-effective graphene-based electrode replacements for high-cost conductor materials, such as gold and silver, used in cell manufacturing.

Read the full story Posted: Sep 04,2023

Toshiba reaches 16.6% efficiency for polymer film-based large-area perovskite solar module

Japanese electronics giant, Toshiba, has reportedly achieved a power conversion of 16.6% for a 703cm2 polymer film-based perovskite solar module.

Toshiba representatives were quoted saying that the Company has provided large film-based perovskite PV module as experimental materials for demonstrations, probably referring to a project conducted at the Aobadai station in Yokohama that includes analyzing indoor performance.

Read the full story Posted: Aug 27,2023

We talk perovskites for the solar industry with the science chief of Solaires

Solaires Entreprises Inc. is a Canadian solar energy startup based in Victoria, BC., who has developed perovskite materials and photovoltaic (PV) modules, designed for integration into IoT devices, small consumer electronics, and smart gadgets. Powered by indoor light, the cells are extremely efficient, modular, and are configurable to suit the application.

Dr. Sahar Sam is Solaires Chief Science Officer, and she was kind enough to answer a few questions we had about Soliares. Dr. Sam holds a B.Sc. and an M.Sc. in Materials Science and Engineering from Shiraz University and a Ph.D. in Mechanical Engineering from the University of Victoria. 

Hello Dr. Sam! We'll be happy to get a short introduction to Solaires, the technology, and products.

Founded in 2020 in Victoria, BC, Solaires Entreprises Inc is at the forefront of the next generation of photovoltaics, targeted for both outdoor light and indoor light, by harnessing the promise of perovskites. Our perovskite photovoltaics are light, thin and made of readily available and low cost materials.

Read the full story Posted: Aug 19,2023

Researchers develop flexible perovskite solar cells on PET films that achieve record indoor efficiency

A collaborative effort by researchers from the Centre for Hybrid and Organic Solar Energy (CHOSE), Department of Electronic Engineering at Tor Vergata University of Rome, Italy, the Department of Textile Engineering at the University of Guilan, Iran, GreatCell Solar Italia, Institute of Crystallography (IC-CNR), Italy, Department of Biological and Environmental Sciences and Technologies at the University of Salento, Italy and Institute of Nanotechnology (CNR NANOTEC), Italy, has resulted in the development of flexible perovskite solar cells with remarkable power conversion efficiencies (PCE) under white LED illumination.

The team achieved a maximum PCE of 28.9% at an illuminance of 200 lx and a record of 32.5% at 1000 lx, essentially converting a third of the incoming power (note that under 1 sun this figure for perovskite technology is less, i.e. one quarter).

Read the full story Posted: Aug 16,2023

Researchers explore the effects of a molecular additive for perovskite LEDs

Researchers from Stanford University and Mississippi State University recently explored the potential of Mn2+-doped perovskite LEDs (PeLEDs) for lighting and display applications. 

By introducing a molecular additive, tris(4-fluorphenyl)phosphine oxide (TFPPO), Mn2+-doped PeLEDs achieved a peak external quantum efficiency of 14.0% and peak luminance (i.e., brightness) of 128,000 cd/m2. These high efficiencies and brightnesses suggest that Mn2+-doped PeLEDs could be implemented in lighting or display applications. However, device stability is also important to consider. The team found that introducing TFPPO compromises the stability of Mn2+-doped PeLEDs—a decrease from 37.0 to 2.54 min. By analyzing both the optoelectronic and photophysical characteristics of Mn2+-doped PeLEDs before and after device operation, the scientists reported insights into this efficiency-stability trade-off.

Read the full story Posted: Aug 05,2023

Researchers develop an autonomous wearable biosensor powered by a perovskite solar cell

Sweat is less invasive to collect than blood, and can tell a lot about a person's health. This is the premise behind the wearable sweat sensors developed by Wei Gao, assistant professor of medical engineering at the California Institute of Technology (Caltech). Over the past five years, Gao has steadily added features to his wearables, making them capable of reading out levels of salts, sugars, uric acid, amino acids, and vitamins as well as more complex molecules like C-reactive protein that can provide timely assessment of certain health risks. Most recently, in collaboration with Martin Kaltenbrunner's group at Johannes Kepler University Linz in Austria, Gao has powered these wearable biosensors with a flexible perovskite solar cell (FPSC).

Perovskite is as much as 1,000 times thinner than silicon solar cell layers, making them "quasi-2D" in Gao's terms. Perovskites can also be tuned to the spectra of different lighting, from outdoor sunlight to various forms of indoor lighting. Importantly, perovskite solar cells can achieve a higher power conversion efficiency (PCE) than silicon, which means they can convert a greater proportion of the light they receive into usable electricity. The flexible perovskite solar cell (FPSC) on Gao's wearable sweat sensor has a record-breaking PCE exceeding 31 percent under indoor light illumination. 

Read the full story Posted: Jul 23,2023

Researchers report robust perovskite formation via vacuum thermal annealing for efficient indoor perovskite solar cells

Researchers from Thailand's Mahidol University, Chiang Mai University, the Center of Excellence for Innovation in Chemistry (PERCH-CIC) and the National Metal and Materials Technology Center (MTEC) have developed triple-cation perovskite solar cells for low-light applications using a manufacturing process based on antisolvent deposition and vacuum thermal annealing (VTA).

“VTA leads to compact, dense, and hard morphology while suppressing trap states at surfaces and grain boundaries, which are key culprits for exciton losses,” the team stated, emphasizing the importance of the second step to produce a high quality perovskite layer. “As indoor light intensity is at least 300 times lower than that of sunlight, dense and homogeneous perovskite formation enticed by vacuum thermal annealing is valuable.”

Read the full story Posted: Jul 09,2023

Perovskite PV modules - affordable and efficient - are available now!

This is a sponsored message by Solaires

Solaires is recycling indoor light to power IoT and electronic devices

Solaires Entreprises Inc. is a Canadian solar energy startup based in Victoria, BC., who has developed perovskite photovoltaic (PV) modules, designed for integration into IoT devices, small consumer electronics, and smart gadgets. Powered by indoor light, the cells are extremely efficient, modular, and are configurable to suit the application.  

For years, the consumer electronics industry has dreamt of new technologies to power or recharge devices with indoor light. Perovskite modules are the most suitable solution and Solaires is proud to announce their perovskite PV modules are now available to the market for evaluation and integration into your devices! The company offers custom module sizes tailored to perfectly suit your needs. Those familiar in this space will appreciate that Solaires PV modules provide superior light absorption to traditional materials.

Why perovskite technology?

Theoretically, the best absorber materials for indoor applications should have an energy band gap between 1.8 to 2.0 eV. Silicon, with a bandgap between 1.1 to 1.6 eV shows poor performance for indoor light. Perovskite, though, has a tunable bandgap. Solaires’ team can adjust the bandgap to be between 1.2 to 2.6 eV, making perovskite PV modules suitable for generating high power from indoor light. This is achieved by a simple and cost effective solution processed to engineer the perovskite composition and the resulting band gap. As a result, Solaires can make perovskite PV modules suitable for generating high power from indoor light.

Fig. 1 illustrates the efficiency of perovskite, note the red area signalling the bandgap for electric light.

Read the full story Posted: Jun 21,2023

Researchers fabricate solar cells based on gold polyhalide hybrid perovskite

Researchers at the Research Institute of Sweden (RISE) and KTH Royal Institute of Technology have presented the ionic liquid (IL) synthesis of two novel pseudo-2D perovskite-type gold(III)polyiodide compounds and their use as active layers in monolithic solar cells.

The team stated that its recent work represents the first demonstration of film deposition of gold iodide/polyiodide compounds onto porous monolithic substrates with subsequent solar cell characterization. The devices reportedly showed promising photovoltaic performance and could unlock new materials design possibilities, ultimately moving away from lead-based photovoltaic materials. These findings further highlight the use of simple polyiodide entities to increase the structural and electronic dimensionality of gold perovskite-type anions.

Read the full story Posted: Jan 14,2023

Researchers develop unique perovskite solar cells for harvesting energy from artificial indoor LED light sources

Researchers at the Indian Institute of Technology Mandi, National Institute of Solar Energy (NISE) and University of North Texas have reported perovskite-based solar technology that can generate power when irradiated with light produced in household light sources like LED or CFL.

The results of this research could support IoT technology, which is being increasingly used in mobile phones, smart homes, and other applications that require various kinds of real-time data. These IoT devices are required to run independently without relying on electrical grids for power supply; primary and secondary batteries are currently used to power such devices. All batteries, irrespective of their kind, have a finite lifespan and are neither cost-effective nor eco-friendly.

Read the full story Posted: Nov 30,2022