Perovskite applications

Researchers use thiocyanate ions to boost the efficiency of perovskite/organic solar cells

Researchers from Soochow University, Hunan University and Friedrich-Alexander University Erlangen-Nürnberg have incorporated pseudo-halogen thiocyanate (SCN) ions in iodide/bromide mixed halide perovskites and showed that they enhance crystallization and reduce grain boundaries. 

While perovskite/organic tandem solar cells could theoretically achieve high efficiency and stability, their performance is hindered by a process known as phase segregation, which degrades the performance of wide-bandgap perovskite cells and adversely affects recombination processes at the tandem solar cells' interconnecting layer. The team devised a strategy to suppress phase segregation in wide-bandgap perovskites, thus boosting the performance and stability of perovskite/organic tandem cells. This strategy entails the use of a pseudo-triple-halide alloy incorporated in mixed halide perovskites based on iodine and bromine.

Read the full story Posted: May 02,2024

Researchers use novel additive to develop efficient tin halide perovskite solar cell

An international group of researchers, led by the Chungbuk National University in South Korea, has reported a tin halide perovskite (Sn-HP) solar cell that uses an additive known as 4-Phenylthiosemicarbazide (4PTSC) to reduce imperfections in the perovskite layer.

Using wide bandgap tin halide perovskites (Sn-HP) could pose an eco-friendly option for multi-junction Sn-HP photovoltaics, but rapid crystallization often results in poor film morphology and substantial defect states, hampering device efficiency. The team's work aims to introduce a novel multifunctional additive to tackle these issues.

Read the full story Posted: May 01,2024

Researchers develop thin, flexible quasi-2D PSCs and demonstrate them in energy-autonomous drones

Researchers from Austria's Johannes Kepler University Linz have developed lightweight, thin (<2.5 μm), flexible and transparent-conductive-oxide-free quasi 2D perovskite solar cells by incorporating alpha-methylbenzyl ammonium iodide into the photoactive perovskite layer. 

The team fabricated the devices directly on an ultrathin polymer foil coated with an alumina barrier layer to ensure environmental and mechanical stability without compromising weight and flexibility.

Read the full story Posted: Apr 28,2024

Researchers create all-inorganic perovskite nanocrystalline glass doped with rare-earth ions

Researchers from China's Kunming University of Science and Technology and Southwest United Graduate School have doped rare-earth ions into borosilicate glass for the first time to induce the self-crystallization of CsPbBr3 QDs.

All-inorganic perovskite quantum dots (QDs) in glass materials, specifically CsPbX3 (X = Cl, Br, I), have potential as next-generation fluorescent materials due to their impressive luminous performance and stability. However, the crystallization process of quantum dots within the glass presents a challenge, leading to uneven crystallinity and subsequent reductions in light efficiency, thereby affecting practical applications. In glass ceramics doped with rare-earth oxides, the introduction of rare-earth ions as nucleating agents can promote the self-precipitation of nanocrystalline crystals within the glass. 

Read the full story Posted: Apr 27,2024

Researchers develop flexible quasi-2D perovskite solar cells with high specific power and improved stability for energy-autonomous drones

Researchers at Austria's Johannes Kepler University Linz have developed lightweight, thin (<2.5 μm), flexible and transparent-conductive-oxide-free quasi-two-dimensional perovskite solar cells by incorporating alpha-methylbenzyl ammonium iodide into the photoactive perovskite layer. 

The team fabricated the devices directly on an ultrathin polymer foil coated with an alumina barrier layer to ensure environmental and mechanical stability without compromising weight and flexibility. 

Read the full story Posted: Apr 21,2024

KEP Technologies develop perovskites-based radiation detection devices

Halide perovskite single crystals such as MAPbBr3 or CsPbBr3 possess properties that make them particularly interesting for the detection of ionizing radiation. The most important of these are their high stopping power for absorbing gamma rays, their low-dark current and effective-charge-transport capability. They are therefore ideal for efficiently producing charges when gamma rays pass through them, which is a basic function required for their use in a detection device.

KEP Technologies, through its Setsafe brand, is developing prototype-level radiation detection devices that incorporate halide perovskite single crystals and that can trigger an alarm based on various criteria. These devices target applications for defense and public protection against nuclear and radiological risks.

Read the full story Posted: Apr 19,2024

Researchers develop novel vapor deposition technique based on continuous flash sublimation for rapid fabrication of all-inorganic perovskite solar cells

Researchers at NREL, BlueDot Photonics, University of Washington, Colorado School of Mines and Rochester Institute of Technology have developed a vapor deposition technique based on continuous flash sublimation (CFS) to fabricate all-inorganic perovskite thin films in under 5 minutes in a continuous process. The adoption of the proposed approach may also result in higher power conversion efficiencies of perovskite solar cell.

Schematic illustration of the continuous flash sublimation (CFS) approach consisting of a mechano-chemical synthesis of the source powder (here CsPb(IxBr1−x)3), the high-throughput deposition process in a home-made evaporation system, and a short post-annealing treatment to improve thin-film quality. Image from Journal of Materials Chemistry A

The team described the new technique as a non-batch process that solves two problems associated with the use of established vapor processing in perovskite material manufacturing – the slow speed of deposition and the non-continuous nature of batch processing.

Read the full story Posted: Apr 18,2024

Perovskites’ bright future in the MicroLED industry

Micro-LED (also known as mLED or µLED) is a display technology based on miniature LED devices that are used to directly create color pixels. Micro-LED displays are highly promising and have the potential to create efficient and great looking flexible displays, which could challenge even the most impressive high-end OLED displays. Micro LEDs are attracting significant attention as next-generation displays owing to their desirable characteristics such as low power consumption, high contrast ratio, high brightness, fast response speed, and long life span.

Samsung Electronics 89-inch microLED TV, 2023

Perovskite materials can benefit the MicroLED industry in two ways: as materials for color conversion (using perovskite-based QDs) and in perovskite-based LED emitters. Much R&D work is taking place on both these fronts, and interest seems to be growing.

Read the full story Posted: Apr 16,2024

Researchers develop strategy that yields 24.67%-efficiency doctor-bladed perovskite solar cells

Scalable deposition of high-efficiency perovskite solar cells (PSCs) is vital to achieving commercialization. However, a significant number of defects are distributed at the buried interface of perovskite film fabricated by scalable deposition, which adversely affects the efficiency and stability of PSCs. Now, researchers at China's Central South University, Hunan Institute of Engineering and  Chinese Academy of Sciences (CAS) addressed this issue by incorporating 2-(N-morpholino)ethanesulfonic acid potassium salt (MESK) as the bridging layer between the tin oxide (SnO2) electron transport layer (ETL) and the perovskite film deposited via scalable two-step doctor blading. 

The scientists reported that both experiment and simulation results demonstrated that MESK can passivate the trap states of Sn suspension bonds, thereby enhancing the charge extraction and transport of the SnO2 ETL. 

Read the full story Posted: Apr 16,2024

Researchers design multifunctional display based on photo-responsive perovskite light-emitting diodes

Researchers at Linköping University, Nanjing University and NanjingTech have developed a multifunctional display that uses photo-responsive metal halide perovskite LEDs as pixels. The perovskite LED display can be simultaneously used as a touch screen, ambient light sensor and image sensor (including for fingerprint drawing) without integrating any additional sensors. The light-to-electricity conversion efficiency of the pixels also allow the display to act as a photovoltaic device that can charge the equipment.

Illustration of functions realized by the multifunctional display. Image from Nature Electronics

This is a step forward compared to current display screens, which are typically only used for information display, but can have a range of different sensors integrated into them for functions such as touch control, ambient light sensing and fingerprint sensing. According to the team, photo-responsive light-emitting diodes (LEDs), which can display information and respond to light excitation, could be used to develop future ultra-thin and large screen-to-body ratio screens. However, photo-response is difficult to achieve with conventional display technologies. 

Read the full story Posted: Apr 12,2024