Double perovskite scintillators to advance X-ray imaging

A team of researchers, led by Professor Yang Yang from State Key Laboratory of Modern Optical Instrumentation, College of Optical Science and Engineering, International Research Center for Advanced Photonics, Zhejiang University, China, and co-workers have developed a nontoxic double perovskite scintillator, which exhibits not only a high light yield but also long-term stability under continuous thermal treatment and X-ray irradiation. Scintillators are a key component for detection of X-rays, which convert X-ray photons to visible photons so they are then detected by a photodiode array.

X-ray imaging based on perovskite scintillator wafers image

Given the high light output and fast light decay of this new scintillator, static X-ray imaging was attained under an extremely low dose of ~1 μGyair, and dynamic X-ray imaging of finger bending without a ghosting effect was demonstrated under a low dose rate of 47.2 μGyair s-1. These results reveal the huge potential in exploring scintillators beyond lead halide perovskites, not only for avoiding toxic elements but also for achieving higher performance.

Perovskite Solar Panel efficiency, current market status

This article is an extract from The Perovskite Handbook, 2020 edition, and explains the current market status of Perovskites Solar Panels.

Solar Panels is the most prominent potential perovskite application, as synthetic perovskites are recognized as inexpensive base materials for high-efficiency commercial photovoltaics. Perovskite PVs are constantly undergoing research and improvement, going from just 2% in 2006 to over 23% today, and constantly improving. Experts forecast that the market for perovskite PV will reach $214 million in 2025.

Solar research-cell efficiencies chart (NREL, 2019)

Power efficiency is obviously a key metric for solar power technologies. In this article we'll explain how solar system efficiency is defined and the current power efficiency market status of PSCs.

LayTec’s new InspiRe in-situ tool used for monitoring perovskite formation

Germany-based in-situ metrology system maker LayTec has announced that its new InspiRe system applies high-speed in-situ reflectance measurements for monitoring perovskite thin-film formations during spin-coating and subsequent annealing.

LayTec’s new InspiRe in-situ tool for control of perovskite formation image

In collaboration with professor Norbert Nickel’s group at HZB, LayTec designed the InspiRe in-situ metrology system, which was applied to monitor both spin-coating and annealing. Gathering data at a time resolution on the millisecond scale allows resolving of the kinetics and phase formations during film formation.

The Perovskite Handbook - 2020 edition

Perovskite-Info is happy to announce the 2020 edition of The Perovskite Handbook. This book is a comprehensive guide to perovskite materials, applications and industry. Perovskites are an exciting class of materials that feature a myriad of exciting properties and are considered the future of solar cells, displays, sensors, LEDs and more. The handbook is now updated to January 2020 and lists recent developments and new companies, initiatives and research activities.

The Perovskite Handbook

Reading this book, you'll learn all about:

  • Different perovskite materials, their properties and structure
  • How perovskites can be made, tuned and used
  • What kinds of applications perovskites may be suitable for
  • What the obstacles on the way to a perovskite revolution are
  • Perovskite solar cells, their merits and challenges
  • The state of the perovskite market, potential and future