American Perovskites and Perotech Energy named finalists in American-Made Startup Contest

American Perovskites (AP), a material and equipment supply company, has recently been named a finalist in the American-Made Startup Contest and awarded $200,000 to synthesize a novel family of polymer hole transport materials. AP is working with a host of players including Colorado School of Mines, TDA Research, TandemPV, and The University of Toledo. Their innovation is industrial synthesis of a novel family of polymer hole transport materials with excellent reliability, optical properties, and cost.

Another finalist in this contest was Perotech Energy, whose innovation is developing perovskite bifacial modules using high throughput and low-cost solution process with high stability and energy yield. 

Read the full story Posted: May 20,2023

Researchers create a material for processing and storing quantum computing information

Researchers from North Carolina State University, University of North Carolina at Chapel Hill, Massachusetts Institute of Technology (MIT),  National Renewable Energy Laboratory, Duke University, Wayne State University and The Hong Kong University of Science and Technology have created a mixed magnon state in an organic hybrid perovskite material by utilizing the Dzyaloshinskii-Moriya-Interaction (DMI). 

The resulting material has potential for processing and storing quantum computing information. The work also expands the number of potential materials that can be used to create hybrid magnonic systems.

Read the full story Posted: Apr 06,2023

Researchers examine the light emitting capabilities of perovskites upon femtosecond laser ablation

Researchers from the Chinese Academy of Science (CAS) have examined the space-resolved photoluminescence and lasing behaviors of single crystal (SC) and polycrystalline (PC) perovskites upon femtosecond laser ablation. 

They discovered that femtosecond laser ablation had a considerable influence on the space-resolved photoluminescence (PL) and lasing behavior of both single crystal and polycrystalline MAPbBr3 perovskites. Due to their distinct defect chemistries and morphologic profiles, the femtosecond laser-generated regions of the material were discovered to have different light emitting behaviors in comparison to the unaffected surface area.

Read the full story Posted: Mar 22,2023

Researchers turn algae into perovskite materials with unique structures

Scientists from Dresden University of Technology (TU Dresden), AMOLF, Helmholtz-Zentrum Dresden Rossendorf and Johannes Gutenberg University Mainz have transformed single-cell algae into functional perovskite materials. The team, led by scientists at the B CUBE—Center for Molecular Bioengineering at TU Dresden, converted mineral shells of algae into lead halide perovskites with tunable physical properties. The new perovskites have unique nano-architectures that are said to be unachievable by conventional synthetic production.

The method can be applied to the mass production of perovskites with tunable structural and electro-optical properties from single-celled organisms. 

Read the full story Posted: Mar 20,2023

Researchers develop new high throughput method for the production of halide perovskites

Researchers from Penn State and the U.S. Army Combat Capabilities Development Command Aviation & Missile Center have created a new process to fabricate large perovskite devices that is more cost- and time-effective than previously possible and that might accelerate future materials discovery.

“This method we developed allows us to easily create very large bulk samples within several minutes, rather than days or weeks using traditional methods,” said Luyao Zheng, a postdoctoral researcher in the Department of Materials Science at Penn State and lead author on the study. “And our materials are high quality — their properties can compete with single-crystal perovskites.”

Read the full story Posted: Feb 24,2023

Researchers examine interfacial interactions of lead-free perovskites for efficient hydrogen production

A research team from City University of Hong Kong (CityU), Curtin University, National Taiwan University, Huazhong University of Science and Technology, Nankai University and Polish Academy of Sciences recently developed a lead-free perovskite photocatalyst that delivers highly efficient solar energy-to-hydrogen conversion.

The team unveiled the interfacial dynamics of solid-solid (between halide perovskite molecules) and solid-liquid (between a halide perovskite and an electrolyte) interfaces during photoelectrochemical hydrogen production. The latest findings open up an avenue to develop a more efficient solar-driven method for producing hydrogen fuel in the future.

Read the full story Posted: Jan 18,2023

Researchers present new method for fabricating thin films of perovskite oxide semiconductors

Researchers from the University of Minnesota Twin Cities-led, University of Wisconsin–Madison and Pacific Northwest National Laboratory have developed a new method for making thin films of perovskite oxide semiconductors, a class of “smart” materials with unique properties that can change in response to stimuli like light, magnetic fields, or electric fields. 

Their work could allow researchers to harness these properties and even combine them with other emerging nano-scale materials to make better devices such as sensors, smart textiles, and flexible electronics.

Read the full story Posted: Jan 04,2023

Researchers achieve temperature-dependent phase stable hybrid halide perovskite films by CVD

Researchers from South-Africa's University of the Western Cape, University of Missouri and Argonne National Laboratory have developed a new way of enhancing the stability and performance of perovskites. 

Missouri University professor Suchismita (Suchi) Guha, the lead author of the study, and her collaborators improved the methods for making lead halide perovskites. Previous techniques for making these thin-film perovskites required liquid processing using solvents, which rendered the films susceptible to degradation when exposed to air. Additionally, with  prior manufacturing processes, one of its molecules undergoes a change to its structure, causing performance limitations in real-world operating conditions. 
With the new technique, the researchers were able to prevent the change, holding the affected molecule in a stable structure throughout a large temperature range. Additionally, the new technique rendered the perovskite air stable, making it appropriate for a potential solar cell. 

Read the full story Posted: Dec 15,2022

Solutions for perovskite material vacuum deposition by MBRAUN

This is a sponsored post by MBRAUN

The potential of perovskites

Over the past decade, perovskites solar cells have attracted tremendous interest from the academic community, becoming a leading photovoltaic trend. Advances in the fundamental understanding of perovskites’ chemical and physical processes made them an attractive class of material for many researchers. In parallel, engineering developments on the architecture and fabrication methods of perovskite-based solar cells are becoming increasingly interesting for the PV industry.

Processing of perovskites

In general, three main types of perovskites processes can be distinguished – the fully vacuum-processed, the fully ambient processed and the hybrid type. For each process, MBRAUN can offer dedicated equipment solutions which will be showed in outline in the following paragraphs.

On one hand vacuum-based methods convince due to high-quality thin films, leading to the best device performance but are but are also characterized by comparatively high investment and operating costs. On the other hand, solution-processing techniques, like spin coating or slot-die coating also produce good-quality layers but excel at significantly lower investment and operation costs.

Comparison of wet and vacuum coating

Read the full story Posted: Dec 01,2022

Researchers develop efficient perovskite-based afterglow material

An international research group, led by Dr. Yang Bin from the Dalian Institute of Chemical Physics (DICP) of the Chinese Academy of Sciences (CAS), has developed cadmium (Cd)-based perovskite single crystals with long afterglow and high luminous quantum yield, and investigated its afterglow luminescence dynamics mechanism.

Afterglow materials have the ability to store multiple radiations such as visible photons, ultraviolet rays, and X-rays. They are widely used in display, biological imaging, anti-counterfeiting technology, and data storage. However, traditional all-inorganic phosphors, such as oxide, sulfide, and nitride-based afterglow materials, have high lattice energy and usually need to be produced by high-temperature processing (>1000°C), which brings considerable energy consumption and safety risks to production and preparation.

Read the full story Posted: Dec 01,2022