NUS team harnesses the properties of 2D perovskites for ultrathin optoelectronic applications

NUS scientists have found that the light emission properties of molecularly thin two-dimensional (2-D) hybrid perovskite can be tuned in a highly reversible way for ultrathin optoelectronic applications. A highly efficient photodetector has been fabricated using hybrid perovskites with the thickness of a single quantum well.

Molecularly thin hybrid perovskite for advanced optoelectronic applications imageAn impression of laser interaction with a molecularly thin 2D perovskites encapsulated by hexagonal boron nitride (blue layer). (Image: NUS)

Each basic unit of a 2D hybrid perovskite is constructed using a semiconducting layer of inorganic material sandwiched between two organic insulating layers. While researchers have studied layered perovskites in their bulk form for many years, the properties of these crystals when their thickness is thinned down to a few and single layers have largely not been explored.

Perovskites show promise as low-cost and efficient photodetectors that transfer both text and music

Researchers at Linköping University and Shenzhen University have shown how inorganic perovskites can be used to produce low-cost and efficient photodetectors that transfer both text and music. "It's a promising material for future rapid optical communication," says Feng Gao, researcher at Linköping University.

Perovskites show promise as low-cost and efficient photodetectors that transfer both text and music image

"Perovskites of inorganic materials have a huge potential to influence the development of optical communication. These materials have rapid response times, are simple to manufacture, and are extremely stable." says Feng Gao.

Researchers develop ultrasensitive photodetectors based on 2D perovskite nanowires

Researchers at the Technical Institute of Physics and Chemistry (TIPC) in China, together with research groups at Tianjin University and the University of California, have realized the fabrication of high-quality two-dimensional perovskite nanowire arrays, which exhibit ultra-sensitive photodetection.

Sensitive perovskite photodetectors image

Through controlling the dewetting dynamics on the asymmetric-wettability topographical interface, the researchers have realized the controllable growth of single-crystalline 2D-perovskite nanowires. These nanowires are self-organized layer-by-layer into quantum wells with alternating conductive perovskite layers and insulating organic cations.

Chinese team develops lead-free perovskite photodetector with excellent sensitivity

A research team at the Dalian Institute of Chemical Physics (DICP) of the Chinese Academy of Sciences has fabricated a sensitive photodetector based on lead-free perovskite single crystals.

Chinese team develops lead-free perovskite photodetector image

"We have developed a high performance photodetector based on MA3Sb2I9 microsingle crystals (MSCs)," said Prof. HAN. Scientists found that MA3Sb2I9 single crystals exhibited a low trap-state density of ~1010 cm-3, high carrier mobility of 12.8 cm2 V-1 s-1 and long carrier diffusion length reaching 3.0 μm.

Northwestern and ANL researchers develop a novel perovskite-based nuclear radiation detector

Researchers from Northwestern University and Argonne National Laboratory research team have developed a perovskite-based next-generation device for nuclear radiation detection that could provide a significantly less expensive alternative to the detectors now in commercial use.

Perovskite-based nuclear radiation detector image

The high-performance material is used in a device that can detect gamma rays, weak signals given off by nuclear materials, and can efficiently identify individual radioactive isotopes. The new material also has the advantage of inexpensive production. Potential uses for the new device include more widespread detectors for nuclear weapons and materials as well as applications in biomedical imaging, astronomy and spectroscopy.