Graphene "shield" improves the stability of perovskite solar cells

A UNIST research team has developed an electrode that can significantly improve the stability of perovskite solar cells. UNIST announced that its research team developed 'flexible and transparent metal electrode-based perovskite solar cells with a graphene interlayer'.

Performance and stability of transparent metal electrode-based perovskite solar cells image

The team suppressed interdiffusion and degradation using a graphene material with high impermeability, the team said. Team leader professor Hyesung Park commented that the research will greatly help not only solar cells but other perovskite-based flexible photoelectric devices such as LEDs and smart sensors.

Read the full story Posted: Jun 03,2020

Scientists develop new light-emitting material based on perovskite nanocrystals

An international team of scientists recently developed a new composite material based on perovskite nanocrystals to fabricate miniature light sources with improved performance.

Protection of perovskite nanocrystals within porous glass microspheres made it possible to increase their stability by almost 3 times. Moreover, the subsequent coating of these particles with polymers resulted in the fabrication of water-dispersible luminescent microspheres based on CsPbBr3 nanocrystals. This method of fabrication is especially important for the implementation of perovskite nanocrystals in diverse biological applications.

Read the full story Posted: May 06,2020

New lead sequestration technique could make for safer lead-based perovskite solar cells

Researchers at Northern Illinois University and the U.S. Department of Energy's (DOE) National Renewable Energy Laboratory (NREL) in Colorado have reported on a potential breakthrough in the development of hybrid perovskite solar cells.

Led by Tao Xu of NIU and Kai Zhu of NREL, the scientists have developed a technique to sequester the lead used to make perovskite solar cells and minimize potential toxic leakage by applying lead-absorbing films to the front and back of the solar cell.

Read the full story Posted: Feb 21,2020

Australia-based research team uses perovskites to manipulate laser light

Researchers in Australia's University of Sydney have found a way to manipulate laser light at a fraction of the cost of current technology. The discovery could help drive down costs in industries as diverse as telecommunications, medical diagnostics and consumer optoelectronics.

Australian researchers use perovskite materials to shape light for industry imageThe polarization of transmitted light is rotated by a crystal immersed in a magnetic field (top). The perovskite crystal (bottom right) rotates light very effectively, due to the atomic configuration of its crystal structure (bottom left)

The research team, led by Dr Girish Lakhwani from the University of Sydney Nano Institute and School of Chemistry, has used inexpensive perovskite crystals to make Faraday rotators. These manipulate light in a range of devices across industry and science by altering a fundamental property of light ' its polarization. This gives scientists and engineers the ability to stabilize, block or steer light on demand.

Read the full story Posted: Feb 17,2020

Korean research team develops CIGS-Perovskite hybrid flexible thin-film solar cells

A joint research team from the Gwangju Institute of Science and Technology (GIST) and the Korea Photonics Technology Institute has developed perovskite-enabled hybrid flexible copper indium gallium selenide (CIGS) thin-film solar cells that can convert all ultraviolet, visible and infrared sunlight into electric energy.

Current flexible CIGS thin-film solar cells are limited by a short wavelength band, from 300 to 390 nanometers, which is absorbed from the transparent electrodes at the top of the solar cell. They cannot convert short wavelength solar energy into electricity. The research team succeeded in developing CsPbBr3 perovskite high-efficiency fluorescents that light up visible light bands by absorbing the light in the ultraviolet region, and applied them to the top of the transparent photoelectric layer of CIGS solar cells.

Read the full story Posted: Jan 01,2020

MIT team creates transparent, conductive coating that could protect perovskite solar cells

Researchers at the Massachusetts Institute of Technology (MIT) have improved a transparent and conductive coating material by increasing its electrical conductivity by 10 times. When this coating material was integrated into a perovskite solar cell, it boosted the stability and efficiency of the solar cell.

'The goal is to find a material that is electrically conductive as well as transparent,' explained the team, which would be ‘'useful in a range of applications, including touch screens and solar cells.'

Read the full story Posted: Nov 26,2019

China-based team develops high efficiency perovskite/silicon tandem solar cells

A research group led by Prof. Liu Shengzhong from the Dalian Institute of Chemical Physics (DICP) of the Chinese Academy of Sciences (CAS) and Prof. Yang Dong at Shaanxi Normal University have developed high efficiency semi-transparent perovskite solar cells by using MoO3 sandwiched gold nanomesh (MoO3/Au/MoO3) multilayer as the transparent electrode. Combined with a superior heterojunction silicon solar cell, a high efficiency four-terminal perovskite/silicon tandem solar cell was obtained.

Tandem/multijunction structure has been proven to be an effective way to break the Shockley-Queisser limit. To obtain a high efficiency tandem solar cell, the key is to fabricate transparent electrode with high conductivity as well as high transparency through a mild method.

Read the full story Posted: Nov 18,2019

New transparent conductive films may boost perovskite PV efficiency

Researchers from King Abdullah University of Science and Technology (KAUST) in Saudi Arabia and University of Twente in the Netherlands have developed transparent conductive films that let through a broader range of the solar spectrum, which are set to increase the power conversion efficiency of perovskite-based multijunction solar cells beyond 30%.

The comparison of the used device test structures with different silicon bottom cells imageA comparison of the used device test structures with different silicon bottom cells. Image taken from Advanced Functional Materials

Performance of perovskite-based tandem solar cells rests on the ability of the top cell to harvest the blue portion of the solar spectrum while letting through the near-infrared light. Conversely, the bottom cell only needs to absorb near-infrared light. "The semitransparency of the top cell depends on the optical bandgap and thickness of the perovskite thin film as well as the characteristics of the transparent electrodes, especially their sun-exposed side," explains study lead Stefaan De Wolf from theKAUST Solar Center.

Read the full story Posted: Oct 03,2019

MIT team uses perovskite PV to power “internet of things” sensors

MIT researchers have designed perovskite photovoltaic-powered sensors that could potentially transmit data for years before they need to be replaced. To this end, the team mounted thin-film perovskite cells as energy-harvesters on inexpensive radio-frequency identification (RFID) tags.

MIT team design PSC-powered sensors on RFID tags that work in sunlight and dimmer indoor lighting image

The cells could power the sensors in both bright sunlight and dimmer indoor conditions. Moreover, the team found the solar power actually gives the sensors a major power boost that enables greater data-transmission distances and the ability to integrate multiple sensors onto a single RFID tag.

 

Read the full story Posted: Sep 30,2019

Korean scientists develop graphene electrode to enable next-gen perovskite solar cells

Several research institutions in South Korea are actively conducting research and development on next-generation solar cells, heightening expectations for commercialization. The research team led by Prof. Yoon Soon-gil of Chungnam National University has developed a new graphene electrode to produce perovskite solar cells at a low temperature. In addition, the team led by Prof. Choi Kyoung-jin of the School of Materials Science and Engineering at UNIST has developed a new concept tandem solar cell using transparent conductive adhesives (TCA).

The graphene electrode developed by Professor Yoon's team can help create a perovskite solar cell at a low temperature and can raise both safety and economic efficiency.

Read the full story Posted: Sep 09,2019