Neodymium ions could protect perovskite solar cells from degradation

An international research collaboration that was led by UCLA and included teams from Marmara University in Turkey, Sungkyunkwan University in Korea, Dalian University of Technology and Westlake University in China, Washington State University, UC Irvine and Washington University in St. Louis, has developed a way to use perovskites in solar cells while protecting it from the conditions that cause it to deteriorate.

The scientists added small quantities of neodymium ions directly to the perovskite. They found not only that the augmented perovskite was much more durable when exposed to light and heat, but also that it converted light to electricity more efficiently.

Read the full story Posted: Dec 16,2022

Researchers fabricate bifacial perovskite-CIGS tandem solar cell and develop a new low-temperature production process

Researchers from EMPA (Swiss Federal Laboratories for Materials Science and Technology), University of Cantabria and National Tsing Hua University have created a bifacial perovskite-CIGS tandem solar cell and developed a new low-temperature production process resulting in record efficiencies of 19.8% for front and 10.9% for rear illumination.

The idea is collecting direct sunlight, as well as its reflection via the rear end of the solar cell, which should increase the yield of energy the cell produces. Potential applications are, for instance, building-integrated photovoltaics, agrivoltaics – the simultaneous use of areas of land for both photovoltaic power generation and agriculture – and vertically or high-tilt installed solar modules on high-altitude grounds.

Read the full story Posted: Dec 15,2022

Researchers achieve temperature-dependent phase stable hybrid halide perovskite films by CVD

Researchers from South-Africa's University of the Western Cape, University of Missouri and Argonne National Laboratory have developed a new way of enhancing the stability and performance of perovskites. 

Missouri University professor Suchismita (Suchi) Guha, the lead author of the study, and her collaborators improved the methods for making lead halide perovskites. Previous techniques for making these thin-film perovskites required liquid processing using solvents, which rendered the films susceptible to degradation when exposed to air. Additionally, with  prior manufacturing processes, one of its molecules undergoes a change to its structure, causing performance limitations in real-world operating conditions. 
With the new technique, the researchers were able to prevent the change, holding the affected molecule in a stable structure throughout a large temperature range. Additionally, the new technique rendered the perovskite air stable, making it appropriate for a potential solar cell. 

Read the full story Posted: Dec 15,2022

GCL Photoelectric Materials completes USD$72 Million B+ round of financing

China's GCL Photoelectric Materials, a subsidiary of GCL TECH, announced the completion of RMB 500 million (around USD$72,000,000) B+ round of financing, which was jointly led by Temasek, Sequoia China, and IDG Capital, followed by Longwater Investment and other institutions.

It was reported that this round of financing will be used to improve the process and equipment development of the 100MW perovskite module production line of GCL Photoelectric Materials.

Read the full story Posted: Dec 14,2022

Meyer Burger establishes new partnerships for high-performance solar modules with perovskite technology

Meyer Burger Technology has signed multi-year cooperation agreements with CSEM from Switzerland, Helmholtz-Zentrum Berlin (HZB), the Fraunhofer Institute for Solar Energy Systems ISE in Freiburg, and the Institute of Photovoltaics at the University of Stuttgart, for the development of high-performance perovskite tandem solar cells and modules.

These activities are focused on the industrialization of the new technologies, moving from the laboratory to mass production with a view to the future expansion of gigawatt capacities at Meyer Burger’s production sites. The aim of the cooperation is the industrial production of solar cells with efficiencies of more than 30 percent.

Read the full story Posted: Dec 13,2022

Researchers use daminozide as an interlayer and additive for efficient perovskite p-i-n structure solar cell

Researchers from China's East China Normal University (ECNU), Shanghai University, Donghua University and Soochow University have fabricated an inverted perovskite solar cell with remarkable charge transport.

They reportedly suppressed carrier recombination at the interface between the perovskite and the charge transport layer, as well as defect-assisted recombination originating from the perovskite layer. The cell has a p-i-n structure, which means the perovskite cell material is deposited onto the hole transport layer, and then coated with the electron transport layer, unlike with conventional n-i-p device architecture. Inverted perovskite solar cells typically show strong stability, but lag behind conventional devices in terms of conversion efficiency and cell performance.

Read the full story Posted: Dec 11,2022

Researchers design a water-splitting system assisted by monolithic perovskite-silicon tandem solar cells

Researchers from Eindhoven University of Technology, Delft University of Technology and TNO (partner in Solliance) have designed an integrated solar-assisted water-splitting system with a flow electrochemical cell and a monolithic perovskite-silicon tandem solar cell.

The team's work demonstrates how a perovskite/silicon tandem cell can be combined with a water electrolyzer system. However, the team said that there are still many steps that need to be taken before commercialization is possible. For example: upscaling the technology, addressing stability in greater detail, and use of more earth-abundant catalysts in the water-splitting reaction.

Read the full story Posted: Dec 09,2022

Researchers develop a new method for extremely stable perovskite solar cells

Researchers at Oxford University, ARC Centre of Excellence for Exciton Science at Monash University,  National Renewable Energy Laboratory (NREL) and SLAC National Accelerator Laboratory have demonstrated a new way to create stable perovskite solar cells, with fewer defects and the potential to rival silicon's durability.

By removing the solvent dimethyl-sulfoxide and introducing dimethylammonium chloride as a crystallization agent, the researchers were able to better control the intermediate phases of the perovskite crystallization process, leading to thin films of greater quality, with reduced defects and enhanced stability.

Read the full story Posted: Dec 09,2022

Researchers use perovskite and quantum dots to build an ultraviolet radiation measurement device

A team of researchers from China's Chinese Academy of Sciences (CAS), Jilin University and Beijing Institute of Technology, has used perovskite and quantum dots to build an ultraviolet radiation measurement device. 

Measuring the intensity of ultraviolet light in outdoor conditions is important because more intense UV light can lead to faster sunburns and potentially to skin cancer in later years. In this new study, the researchers built a wearable device that can measure ultraviolet radiation in real-time and send the information to a smartphone.

Read the full story Posted: Dec 08,2022

Researchers use facial mask technique to improve perovskite solar cells

Researchers from China's Nanjing University of Posts & Telecommunications, Sichuan University and Chinese Academy of Sciences (CAS) recently developed a new technology for the production of perovskite films that uses effects similar to those of facial masks, which promote the absorption of skincare products into the skin.

The newly developed technology made it possible to produce high-quality films with a smooth surface and a high efficiency of converting solar energy into electrical power.

Read the full story Posted: Dec 07,2022