Researchers report annealing-free flexible perovskite quantum dot solar cells that use UV-sintered Ga-doped SnO2 electron transport layers

Researchers from Hanyang University, Nankai University and Kookmin University have developed a room-temperature-processed tin oxide (SnO2) ETL preparation method for flexible perovskite quantum dots (PQD) solar cells. Low-temperature ETL deposition methods are especially desirable for fabricating flexible solar cells on polymer substrates.

The process involves synthesizing highly crystalline SnO2 nanocrystals stabilized with organic ligands, spin-coating their dispersion, followed by UV irradiation. The energy level of SnO2 is controlled by doping gallium ions to reduce the energy level mismatch with the PQD. 

Read the full story Posted: Mar 21,2024

SoFab Inks unveils new high-performance, low-cost ETL for perovskite solar cells

SoFab Inks, a supplier of specialty materials used in perovskite manufacturing, has introduced a new high-performance, low-cost electron transport layer (ETL), designed to enhance the durability and manufacturability of perovskite solar cells.

SoFab's new product is a functionalized nanoparticle ink that can be tuned with a dopant. This innovative ETL offers a range of benefits, including low-temperature solution processability, excellent photostability, high chemical stability, robust electron conductivity, good optical transparency, wide band gap, and favorable alignment with perovskites.

SoFab's team has reported a PCE of over 20% in an inverted perovskite solar cell architecture made with a plastic substrate. The Company anticipates that its patented ETL could serve as a viable substitute for the commonly employed C60, an expensive organic ETL notorious for delamination issues and Voc pinning.

Read the full story Posted: Mar 19,2024

Researchers develop high-performance bifacial perovskite solar cells using single-walled carbon nanotubes

Researchers at the University of Surrey, University of Cambridge and Chinese Academy of Sciences, Xidian University, and Zhengzhou University have developed a novel approach for bifacial perovskite devices using single-walled carbon nanotubes as both front and back electrodes.

Single-walled carbon nanotubes offer high transparency, conductivity, and stability, enabling bifacial PSCs with a bifaciality factor of over 98% and a power generation density of over 36%. 

Read the full story Posted: Mar 19,2024

Researchers develop method to regulate the hole transport layer for efficient perovskite solar cells

Researchers at CAS (Chinese Academy of Sciences) and Henan University have developed a nanomaterial-regulated doping strategy to pre-oxidize spiro-OMeTAD into radicals in the precursor solution with tin sulfoxide (SnSO) nanomaterials prepared at high temperature. The team increased the photoelectric conversion efficiency (PCE) of perovskite solar cells (PSCs) to 24.5% using the inorganic SnSO as a dopant to oxidize and regulate the organic hole transport layer 2,2′,7,7′-tetrakis[N,N-di(4-methoxyphenyl)amino]-9,9-spirobifluorene (spiro-OMeTAD).

Spiro-OMeTAD is an important hole transport layer (HTL) material. To enhance the charge transport capability of spiro-OMeTAD, lithium trifluoromethanesulfonyl imide (Li-TFSI) is required to mediate the reaction between oxygen and spiro-OMeTAD. However, this traditional doping method has low doping efficiency, and excessive Li-TFSI will remain in the spiro-OMeTAD film, leading to a decrease in the compactness and long-term conductivity of the film. The duration of the oxidation reaction usually takes 10 to 24 hours to reach the desired conductivity and work function. In this study, the researchers developed a fast and reproducible strategy to control the oxidation of the nanomaterial. They used SnSO nanomaterial to pre-oxidize spiro-OMeTAD to spiro-OMeTAD+TFSI- free radicals in precursor solutions. This improved the conductivity, optimized the energy level position of HTL, and achieved a high PCE of 24.5%.

Read the full story Posted: Mar 18,2024

Researchers use BCP to boost the performance of perovskite solar cells

In a recent study by researchers from Henan University and the Chinese Academy of Sciences (CAS), the interface of indium tin oxide/electron transport layer (ITO/ETL) in n-i-p structured devices was targeted. Electron transport layers are typically fabricated using commercial nano tin dioxide, which often displays insufficient density. To combat this, the scientists employed the commonly used bathocuproine (BCP) material to treat the ITO/ETL interface. 

The incorporation of BCP diminishes the direct contact between the perovskite and ITO layers, while also passivating buried interface and adjusting the crystal orientation of perovskites. Furthermore, the substrate layer exhibits improved transparency, consequently elevating the utilization rate of light by perovskite.

Read the full story Posted: Mar 17,2024

Researchers develop method for enhancing the performance of blue perovskite LEDs

Researchers at the University of Cambridge, University of Science and Technology of China, Shanghai Jiao Tong University, Soochow University, OIST, Hong Kong University of Science and Technology, Victoria University of Wellington and Kyushu University have demonstrated efficient blue perovskite LEDs based on a mixed two-dimensional–three-dimensional perovskite and a multifunctional ionic additive that enables control over the reduced-dimensional phases, non-radiative recombination channels and spectral stability. 

The team reported a series of devices that emit efficient electroluminescence from mixed bromide/chloride quasi-three-dimensional regions, with external quantum efficiencies of up to 21.4% (at a luminance of 22 cd m–2 and emission peak at 483 nm), 13.2% (at a luminance of 2.0 cd m–2 and emission peak at 474 nm) and 7.3% (at a luminance of 6 cd m–2 and emission peak at 464 nm). The devices showed a nearly 30-fold increase in operational stability compared with control LEDs, with a half-lifetime of 129 min at an initial luminance of 100 cd m–2

Read the full story Posted: Mar 17,2024

Macnica develops a new air quality sensor that uses perovskite solar cells and semi-solid batteries

Macnica, a Technology Solutions Partner that provides products, services, and solutions, has announced a new type of air quality sensor that uses perovskite solar cells and semi-solid batteries. The sensor uses perovskite solar cells from EneCoat Technologies, a startup from Kyoto University.

It was reported that for several years, an indoor perovskite solar cell effectiveness demonstration project has been taking place in the company's office in Tokyo. Through this demonstration project, it was reportedly demonstrated that the technology can become a sustainable energy source in the future, including use under low illumination, and data on various issues was gathered toward the practical application of perovskite solar cells.

Read the full story Posted: Mar 14,2024

Researchers examine prospects of vapor-based deposition to short track perovskite PV's road to commercialization

A large international group of researchers worked together to form a balanced viewpoint on the prospects of vapor-based processing of perovskite PV on an industrial scale. 

Their perspective highlights the conceptual advantages of vapor phase deposition, discusses the most crucial process parameters in a technology assessment, contains an overview about relevant global industry clusters, and provides an outlook on the commercialization perspectives of the perovskite technology in general.

Read the full story Posted: Mar 10,2024

Kunshan GCL Photoelectric Materials announces 19.04% efficiency on single-junction perovskite modules (1,000mmx2,000mm)

Reports suggest that China-based GCL (via its new subsidiary Kunshan GCL Photoelectric Materials) has achieved a photoelectric conversion efficiency of 19.04% on a 1,000mm x 2,000mm single-junction perovskite solar module. The result was reportedly officially tested by the China National Institute of Metrology to confirm the results.

The GCL Perovskite team stated it is "delighted to have achieved its goal of surpassing the expected conversion efficiency of 19% for standard-sized perovskite modules, having previously achieved 18.04% conversion efficiency for a single-junction perovskite solar module in November 2023". And the team is one step closer to its efficiency target of 26% for a 2m² (1,000mm × 2,000mm) single-junction perovskite solar module, while focusing on research and development for the next generation of tandem perovskite modules.

Read the full story Posted: Mar 09,2024