University of Cambridge and Cornell University Researchers have done 'cradle-to-grave' life cycle assessments of a variety of perovskite solar cell architectures, and found that substrates with conducting oxides and energy-intensive heating processes are the largest contributors to primary energy consumption, global warming potential and other types of impact.
The team therefore focus on these materials and processes when expanding to 'cradle-to-cradle' analyses with recycling as the end-of-life scenario. Their results revealed that recycling strategies can lead to a decrease of up to 72.6% in energy payback time and a reduction of 71.2% in greenhouse gas emission factor.
Finally, the team used sensitivity analyses to highlight the importance of prolonging device lifetime and to quantify the effects of uncertainty induced by the still immature manufacturing processes, changing operating conditions and individual differences for each module.