Researchers design perovskite solar cell with 31.31% efficiency using unique perovskite material

Researchers from Bangladesh, Saudi Arabia, Pakistan, USA, Nepal and China have explored the fascinating structural, optical, and electronic features of calcium nitrogen iodide (Ca3NI3) as an attractive material for developing absorbers for efficient and reasonably priced solar cells. 

Potential applications as an absorber layer in heterostructure solar cells for the perovskite material Ca3NI3 have been thoroughly studied theoretically. For the Ca3NI3 absorber-based cell structure with CdS as the ETL layer, the best PV values were discovered using the SCAPS-1D simulator. Working temperatures, interface densities of active materials, doping densities, and layer thicknesses were all carefully considered while analyzing the PV performance. 


It was also possible to find the quantum efficiency (QE), generation and recombination rates, and current density-voltage (J-V). The structure composed of Al/FTO/CdS/Ca3NI3/Ni demonstrated a remarkable power conversion efficiency (PCE) of 31.31%. With CdS serving as the electron transport layer (ETL), the high efficiency was matched by a current density (JSC) of 43.590813 mA/cm2, a fill factor (FF) of 81.68%, and an open-circuit voltage (VOC) of 0.8793 V. 

This work contributes to a better understanding of the potential of Ca3NI3 in heterostructure perovskite solar cells, which will facilitate the creation of more robust and efficient PSC devices.

Posted: Mar 27,2024 by Roni Peleg