Korean team designs a new kind of liquid scintillator via hybridizing perovskite nanocrystals with organic molecules

A team of scientists, led by Professors Hyunsik Im, Hyungsang Kim and Jungwon Kwak from Dongguk University and Asan Medical Center in Korea,have developed perovskite metal halide nanocrystals based hybrid materials with high quantum yields for efficient X-ray detection and high-resolution X-ray imaging.

Using the hybrid nanomaterial scintillators, they designed a scalable and cost-effective X-ray detector panel in liquid form. The hybrid nanomaterial scintillator works under X-ray irradiation typically employed in both diagnosis and treatment. More interestingly, the hybrid scintillator has a faster scintillation decay process over the conventional scintillators, which is beneficial for digital motion X-ray. The reported method and scintillation mechanism will be extended to enhance the quantum yield of various types of scintillators, enabling low-dose radiation detection in various fields including fundamental science and imaging.

Read the full story Posted: Sep 10,2020

UNT researcher awarded $474,000 grant from Navy to develop flexible, printed perovskite solar cells

University of North Texas professor Anupama Kaul has received a $474,000 grant from the Office of Naval Research under the Department of Defense to develop new perovskite-based solar cell technology.

Kaul, who directs the Nanoscale Materials and Devices Lab and the PACCAR Technology Institute, intends to utilize perovskite materials that are extremely efficient at absorbing incoming light. Many perovskites used in solar cell research are made with solutions, and yet, remarkably, the solution processed materials are still highly absorbing to incoming light. The main advantage of solution processing is that it greatly reduces manufacturing costs of solar cells compared to the sophisticated and expensive infrastructure needed to make them with crystalline materials.

Read the full story Posted: Sep 06,2020

Perovskite and organic solar cells tested in space

Researchers in Germany have sent perovskite and organic solar cells on a rocket into space. The solar cells withstood the extreme conditions in space, producing power from direct sunlight and reflective light from the Earth's surface. The work sets the foundation for future near-Earth applications as well as potential deep space missions.

One of the goals for space missions is to minimize the weight of equipment that the rocket carries. While current inorganic silicon solar panels used in space missions and satellites have high efficiencies, they are also very heavy and rigid. The emerging technology of hybrid perovskite and organic solar cells that are incredibly light and flexible becomes an ideal candidate for future applications.

Read the full story Posted: Aug 13,2020

Saule Technologies to develop perovskite solar module enabled IOT asset tracking for wildlife conservation

An animal-tracking system by Saule Technologies will support the monitoring of European bison in Ukraine. Local partner World Wide Fund for Nature (WWF) Ukraine, WWF Poland and Saule Technologies will cooperate on the 'Perovskite Solar Module Enabled IOT Asset Tracking for Wildlife Conservation' initiative under the Challenge Fund: Polish Solutions for SDGs Fund, with the financial support of the Ministry of Foreign Affairs of the Republic of Poland.

Bohdan Vykhor, PhD, Wildlife Programme manager at the WWF Ukraine, explains that bison population recovery is an ongoing process. 'The species was reintroduced to various areas in Europe with significant efforts from different wildlife conservation programs (WWF, LHI, COA, IUCN, LIFE EU) and great work should be done in the future. We need to connect the free moving bison population divided across Europe and support natural gene flow. Using tracking systems on captive animals is an important element for understanding their behavior in the natural environment, ecological corridors and crucial habitats for different stages of their life cycle - so vital data is key to the success of species conservations.'

Read the full story Posted: Aug 11,2020

Cornell team compares the environmental impacts of perovskite and silicon solar cells

Researchers at Cornell University and University of Cambridge have analyzed the overall environmental impact of two types of solar panels, comparing these against panels made with crystalline silicon wafers ' the current industry standard.

The team found that a solar panel made from two layers of perovskite requires a smaller total energy input and results in fewer carbon emissions. The panel, a perovskite-perovskite tandem, contains two layers of the material on top of each other, each optimized to absorb a section of the electromagnetic spectrum.

Read the full story Posted: Aug 02,2020

New production method yields flexible single-crystal perovskite films with controlled area, thickness, and composition

Scientists at UC San Diego have developed a new method to fabricate perovskites as single-crystal thin films, which are more efficient for use in solar cells and optical devices than the current state-of-the-art polycrystalline forms of the material.

Their fabrication method - which uses standard semiconductor fabrication processes - results in flexible single-crystal perovskite films with controlled area, thickness, and composition. These single-crystal films showed fewer defects, greater efficiency, and enhanced stability than their polycrystalline counterparts, which could lead to the use of perovskites in solar cells, LEDs, and photodetectors.

Read the full story Posted: Jul 31,2020

Novel graphene-based encapsulation opens door to robust perovskite solar cells

Researchers at Pusan National University, Gwangju Institute of Science and Technology and the Korea Institute of Machinery & Materials (KIMM) in South Korea have tackled perovskite solar cells' stability issues by designing a graphene-based encapsulation technique.

Roll-transferred graphene encapsulant for robust perovskite solar cells image

The team introduced a highly flexible and stable graphene encapsulant by adopting the dry transfer method based on a roll-based process.

Read the full story Posted: Jul 27,2020

Rooftop solar window based on semi-transparent perovskite solar cells

Researchers from the U.S. Department of Energy's Argonne National Laboratory have demonstrated a prototype solar-powered rooftop smart window based on an optimization algorithm capable of balancing a building's temperature demands and lighting needs.

Maximizing Solar Energy Utilization through Multicriteria Pareto Optimization of Energy Harvesting and Regulating Smart Windows image

The device is described as an energy-harvesting smart window built with semi-transparent lead-halide perovskite solar cells and multi-layer photonic structures and assembled with layer-by-layer spin coating. 'The lead-halide perovskite was chosen because of its capability of using a wide spectrum of sunlight and its simplicity in maintaining visible light transparency,' the team wrote.

Read the full story Posted: Jul 15,2020

Swansea team reaches record efficiency for roll-to-roll printed perovskite solar cells

A recent study reported the highest efficiency ever recorded for full roll-to-roll printed perovskite solar cells (PSCs), marking a significant step on the way to cheaper and more efficient ways of generating solar energy.

The team at Swansea University's SPECIFIC Innovation and Knowledge Center, led by Trystan Watson, reported using a roll-to-roll fabrication method for four layers of slot-die coated PSCs. The PSCs gave the stable power output of 12.2 percent - the highest efficiency recorded for four layers of roll-to-roll printed PSCs to date.

Read the full story Posted: Jul 10,2020