Researchers bring perovskite solar cells with inverted architecture to 23.7% efficiency

In a joint collaborative effort between the University of Pavia in Italy and the Technische Universität Dresden in Germany, researchers have developed a novel method to significantly improve the efficiency of inverted architecture perovskite solar cells.

The method is based on a modification of the interfaces of the perovskite active layer by introducing small amounts of organic halide salts at both the bottom and the top of the perovskite layer. Such organic halide salts, typically used for the formation of two-dimensional perovskites, led to the suppression of microstructural flaws and passivation of the defects of the perovskite layer. Using this approach, the team has achieved a power conversion efficiency of 23.7%, which they say is the highest reported to date for an inverted architecture perovskite solar cell.

"Importantly, the improvement in performance is accompanied by an increase in device stability" says Prof. Giulia Grancini, an Associate Professor of Chemistry at the University of Pavia, that stresses that the simultaneous improvement of efficiency and stability is particularly promising.

"The fact that our devices are fabricated at low temperatures of less than 100° C and that our approach is fully applicable to the fabrication of large area devices takes us one step closer to large-scale utilization of perovskite solar cells" adds Prof. Yana Vaynzof, Chair for Emerging Electronic Technologies at the Institute for Applied Physics and Photonic Materials and the Center for Advancing Electronics Dresden (cfaed).

Posted: Dec 04,2021 by Roni Peleg